Chen, Xiaohui
Graph-Based Model-Agnostic Data Subsampling for Recommendation Systems
Chen, Xiaohui, Sun, Jiankai, Wang, Taiqing, Guo, Ruocheng, Liu, Li-Ping, Zhang, Aonan
Data subsampling is widely used to speed up the training of large-scale recommendation systems. Most subsampling methods are model-based and often require a pre-trained pilot model to measure data importance via e.g. sample hardness. However, when the pilot model is misspecified, model-based subsampling methods deteriorate. Since model misspecification is persistent in real recommendation systems, we instead propose model-agnostic data subsampling methods by only exploring input data structure represented by graphs. Specifically, we study the topology of the user-item graph to estimate the importance of each user-item interaction (an edge in the user-item graph) via graph conductance, followed by a propagation step on the network to smooth out the estimated importance value. Since our proposed method is model-agnostic, we can marry the merits of both model-agnostic and model-based subsampling methods. Empirically, we show that combing the two consistently improves over any single method on the used datasets. Experimental results on KuaiRec and MIND datasets demonstrate that our proposed methods achieve superior results compared to baseline approaches.
Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling
Chen, Xiaohui, He, Jiaxing, Han, Xu, Liu, Li-Ping
Diffusion-based generative graph models have been proven effective in generating high-quality small graphs. However, they need to be more scalable for generating large graphs containing thousands of nodes desiring graph statistics. In this work, we propose EDGE, a new diffusion-based generative graph model that addresses generative tasks with large graphs. To improve computation efficiency, we encourage graph sparsity by using a discrete diffusion process that randomly removes edges at each time step and finally obtains an empty graph. EDGE only focuses on a portion of nodes in the graph at each denoising step. It makes much fewer edge predictions than previous diffusion-based models. Moreover, EDGE admits explicitly modeling the node degrees of the graphs, further improving the model performance. The empirical study shows that EDGE is much more efficient than competing methods and can generate large graphs with thousands of nodes. It also outperforms baseline models in generation quality: graphs generated by our approach have more similar graph statistics to those of the training graphs.
Likelihood Adjusted Semidefinite Programs for Clustering Heterogeneous Data
Zhuang, Yubo, Chen, Xiaohui, Yang, Yun
Clustering is a widely deployed unsupervised learning tool. Model-based clustering is a flexible framework to tackle data heterogeneity when the clusters have different shapes. Likelihood-based inference for mixture distributions often involves non-convex and high-dimensional objective functions, imposing difficult computational and statistical challenges. The classic expectation-maximization (EM) algorithm is a computationally thrifty iterative method that maximizes a surrogate function minorizing the log-likelihood of observed data in each iteration, which however suffers from bad local maxima even in the special case of the standard Gaussian mixture model with common isotropic covariance matrices. On the other hand, recent studies reveal that the unique global solution of a semidefinite programming (SDP) relaxed $K$-means achieves the information-theoretically sharp threshold for perfectly recovering the cluster labels under the standard Gaussian mixture model. In this paper, we extend the SDP approach to a general setting by integrating cluster labels as model parameters and propose an iterative likelihood adjusted SDP (iLA-SDP) method that directly maximizes the exact observed likelihood in the presence of data heterogeneity. By lifting the cluster assignment to group-specific membership matrices, iLA-SDP avoids centroids estimation -- a key feature that allows exact recovery under well-separateness of centroids without being trapped by their adversarial configurations. Thus iLA-SDP is less sensitive than EM to initialization and more stable on high-dimensional data. Our numeric experiments demonstrate that iLA-SDP can achieve lower mis-clustering errors over several widely used clustering methods including $K$-means, SDP and EM algorithms.
Interpretable Node Representation with Attribute Decoding
Chen, Xiaohui, Chen, Xi, Liu, Liping
Variational Graph Autoencoders (VGAEs) are powerful models for unsupervised learning of node representations from graph data. In this work, we systematically analyze modeling node attributes in VGAEs and show that attribute decoding is important for node representation learning. We further propose a new learning model, interpretable NOde Representation with Attribute Decoding (NORAD). The model encodes node representations in an interpretable approach: node representations capture community structures in the graph and the relationship between communities and node attributes. We further propose a rectifying procedure to refine node representations of isolated notes, improving the quality of these nodes' representations. Our empirical results demonstrate the advantage of the proposed model when learning graph data in an interpretable approach.
Wasserstein $K$-means for clustering probability distributions
Zhuang, Yubo, Chen, Xiaohui, Yang, Yun
Clustering is an important exploratory data analysis technique to group objects based on their similarity. The widely used $K$-means clustering method relies on some notion of distance to partition data into a fewer number of groups. In the Euclidean space, centroid-based and distance-based formulations of the $K$-means are equivalent. In modern machine learning applications, data often arise as probability distributions and a natural generalization to handle measure-valued data is to use the optimal transport metric. Due to non-negative Alexandrov curvature of the Wasserstein space, barycenters suffer from regularity and non-robustness issues. The peculiar behaviors of Wasserstein barycenters may make the centroid-based formulation fail to represent the within-cluster data points, while the more direct distance-based $K$-means approach and its semidefinite program (SDP) relaxation are capable of recovering the true cluster labels. In the special case of clustering Gaussian distributions, we show that the SDP relaxed Wasserstein $K$-means can achieve exact recovery given the clusters are well-separated under the $2$-Wasserstein metric. Our simulation and real data examples also demonstrate that distance-based $K$-means can achieve better classification performance over the standard centroid-based $K$-means for clustering probability distributions and images.
Sketch-and-Lift: Scalable Subsampled Semidefinite Program for $K$-means Clustering
Zhuang, Yubo, Chen, Xiaohui, Yang, Yun
Semidefinite programming (SDP) is a powerful tool for tackling a wide range of computationally hard problems such as clustering. Despite the high accuracy, semidefinite programs are often too slow in practice with poor scalability on large (or even moderate) datasets. In this paper, we introduce a linear time complexity algorithm for approximating an SDP relaxed $K$-means clustering. The proposed sketch-and-lift (SL) approach solves an SDP on a subsampled dataset and then propagates the solution to all data points by a nearest-centroid rounding procedure. It is shown that the SL approach enjoys a similar exact recovery threshold as the $K$-means SDP on the full dataset, which is known to be information-theoretically tight under the Gaussian mixture model. The SL method can be made adaptive with enhanced theoretic properties when the cluster sizes are unbalanced. Our simulation experiments demonstrate that the statistical accuracy of the proposed method outperforms state-of-the-art fast clustering algorithms without sacrificing too much computational efficiency, and is comparable to the original $K$-means SDP with substantially reduced runtime.
Order Matters: Probabilistic Modeling of Node Sequence for Graph Generation
Chen, Xiaohui, Han, Xu, Hu, Jiajing, Ruiz, Francisco J. R., Liu, Liping
A graph generative model defines a distribution over graphs. One type of generative model is constructed by autoregressive neural networks, which sequentially add nodes and edges to generate a graph. However, the likelihood of a graph under the autoregressive model is intractable, as there are numerous sequences leading to the given graph; this makes maximum likelihood estimation challenging. Instead, in this work we derive the exact joint probability over the graph and the node ordering of the sequential process. From the joint, we approximately marginalize out the node orderings and compute a lower bound on the log-likelihood using variational inference. We train graph generative models by maximizing this bound, without using the ad-hoc node orderings of previous methods. Our experiments show that the log-likelihood bound is significantly tighter than the bound of previous schemes. Moreover, the models fitted with the proposed algorithm can generate high-quality graphs that match the structures of target graphs not seen during training. We have made our code publicly available at \hyperref[https://github.com/tufts-ml/graph-generation-vi]{https://github.com/tufts-ml/graph-generation-vi}.
GAN Ensemble for Anomaly Detection
Han, Xu, Chen, Xiaohui, Liu, Li-Ping
When formulated as an unsupervised learning problem, anomaly detection often requires a model to learn the distribution of normal data. Previous works apply Generative Adversarial Networks (GANs) to anomaly detection tasks and show good performances from these models. Motivated by the observation that GAN ensembles often outperform single GANs in generation tasks, we propose to construct GAN ensembles for anomaly detection. In the proposed method, a group of generators and a group of discriminators are trained together, so every generator gets feedback from multiple discriminators, and vice versa. Compared to a single GAN, a GAN ensemble can better model the distribution of normal data and thus better detect anomalies. Our theoretical analysis of GANs and GAN ensembles explains the role of a GAN discriminator in anomaly detection. In the empirical study, we evaluate ensembles constructed from four types of base models, and the results show that these ensembles clearly outperform single models in a series of tasks of anomaly detection.
Diffusion $K$-means clustering on manifolds: provable exact recovery via semidefinite relaxations
Chen, Xiaohui, Yang, Yun
We introduce the {\it diffusion $K$-means} clustering method on Riemannian submanifolds, which maximizes the within-cluster connectedness based on the diffusion distance. The diffusion $K$-means constructs a random walk on the similarity graph with vertices as data points randomly sampled on the manifolds and edges as similarities given by a kernel that captures the local geometry of manifolds. Thus the diffusion $K$-means is a multi-scale clustering tool that is suitable for data with non-linear and non-Euclidean geometric features in mixed dimensions. Given the number of clusters, we propose a polynomial-time convex relaxation algorithm via the semidefinite programming (SDP) to solve the diffusion $K$-means. In addition, we also propose a nuclear norm (i.e., trace norm) regularized SDP that is adaptive to the number of clusters. In both cases, we show that exact recovery of the SDPs for diffusion $K$-means can be achieved under suitable between-cluster separability and within-cluster connectedness of the submanifolds, which together quantify the hardness of the manifold clustering problem. We further propose the {\it localized diffusion $K$-means} by using the local adaptive bandwidth estimated from the nearest neighbors. We show that exact recovery of the localized diffusion $K$-means is fully adaptive to the local probability density and geometric structures of the underlying submanifolds.