Chen, Xiao
SharedAssembly: A Data Collection Approach via Shared Tele-Assembly
Wu, Yansong, Chen, Xiao, Chen, Yu, Sadeghian, Hamid, Wu, Fan, Bing, Zhenshan, Haddadin, Sami, König, Alexander, Knoll, Alois
Assembly is a fundamental skill for robots in both modern manufacturing and service robotics. Existing datasets aim to address the data bottleneck in training general-purpose robot models, falling short of capturing contact-rich assembly tasks. To bridge this gap, we introduce SharedAssembly, a novel bilateral teleoperation approach with shared autonomy for scalable assembly execution and data collection. User studies demonstrate that the proposed approach enhances both success rates and efficiency, achieving a 97.0% success rate across various sub-millimeter-level assembly tasks. Notably, novice and intermediate users achieve performance comparable to experts using baseline teleoperation methods, significantly enhancing large-scale data collection.
Learning Humanoid Standing-up Control across Diverse Postures
Huang, Tao, Ren, Junli, Wang, Huayi, Wang, Zirui, Ben, Qingwei, Wen, Muning, Chen, Xiao, Li, Jianan, Pang, Jiangmiao
Standing-up control is crucial for humanoid robots, with the potential for integration into current locomotion and loco-manipulation systems, such as fall recovery. Existing approaches are either limited to simulations that overlook hardware constraints or rely on predefined ground-specific motion trajectories, failing to enable standing up across postures in real-world scenes. To bridge this gap, we present HoST (Humanoid Standing-up Control), a reinforcement learning framework that learns standing-up control from scratch, enabling robust sim-to-real transfer across diverse postures. HoST effectively learns posture-adaptive motions by leveraging a multi-critic architecture and curriculum-based training on diverse simulated terrains. To ensure successful real-world deployment, we constrain the motion with smoothness regularization and implicit motion speed bound to alleviate oscillatory and violent motions on physical hardware, respectively. After simulation-based training, the learned control policies are directly deployed on the Unitree G1 humanoid robot. Our experimental results demonstrate that the controllers achieve smooth, stable, and robust standing-up motions across a wide range of laboratory and outdoor environments. Videos are available at https://taohuang13.github.io/humanoid-standingup.github.io/.
TorchResist: Open-Source Differentiable Resist Simulator
Wang, Zixiao, Zhou, Jieya, Zheng, Su, Yin, Shuo, Liang, Kaichao, Hu, Shoubo, Chen, Xiao, Yu, Bei
Recent decades have witnessed remarkable advancements in artificial intelligence (AI), including large language models (LLMs), image and video generative models, and embodied AI systems. These advancements have led to an explosive increase in the demand for computational power, challenging the limits of Moore's Law. Optical lithography, a critical technology in semiconductor manufacturing, faces significant challenges due to its high costs. To address this, various lithography simulators have been developed. However, many of these simulators are limited by their inadequate photoresist modeling capabilities. This paper presents TorchResist, an open-source, differentiable photoresist simulator.TorchResist employs an analytical approach to model the photoresist process, functioning as a white-box system with at most twenty interpretable parameters. Leveraging modern differentiable programming techniques and parallel computing on GPUs, TorchResist enables seamless co-optimization with other tools across multiple related tasks. Our experimental results demonstrate that TorchResist achieves superior accuracy and efficiency compared to existing solutions. The source code is publicly available.
Class-Imbalanced-Aware Adaptive Dataset Distillation for Scalable Pretrained Model on Credit Scoring
Li, Xia, Zheng, Hanghang, Chen, Xiao, Liu, Hong, Mao, Mao
The advent of artificial intelligence has significantly enhanced credit scoring technologies. Despite the remarkable efficacy of advanced deep learning models, mainstream adoption continues to favor tree-structured models due to their robust predictive performance on tabular data. Although pretrained models have seen considerable development, their application within the financial realm predominantly revolves around question-answering tasks and the use of such models for tabular-structured credit scoring datasets remains largely unexplored. Tabular-oriented large models, such as TabPFN, has made the application of large models in credit scoring feasible, albeit can only processing with limited sample sizes. This paper provides a novel framework to combine tabular-tailored dataset distillation technique with the pretrained model, empowers the scalability for TabPFN. Furthermore, though class imbalance distribution is the common nature in financial datasets, its influence during dataset distillation has not been explored. We thus integrate the imbalance-aware techniques during dataset distillation, resulting in improved performance in financial datasets (e.g., a 2.5% enhancement in AUC). This study presents a novel framework for scaling up the application of large pretrained models on financial tabular datasets and offers a comparative analysis of the influence of class imbalance on the dataset distillation process. We believe this approach can broaden the applications and downstream tasks of large models in the financial domain.
Label-Efficient Data Augmentation with Video Diffusion Models for Guidewire Segmentation in Cardiac Fluoroscopy
Pan, Shaoyan, Liu, Yikang, Zhao, Lin, Chen, Eric Z., Chen, Xiao, Chen, Terrence, Sun, Shanhui
The accurate segmentation of guidewires in interventional cardiac fluoroscopy videos is crucial for computer-aided navigation tasks. Although deep learning methods have demonstrated high accuracy and robustness in wire segmentation, they require substantial annotated datasets for generalizability, underscoring the need for extensive labeled data to enhance model performance. To address this challenge, we propose the Segmentation-guided Frame-consistency Video Diffusion Model (SF-VD) to generate large collections of labeled fluoroscopy videos, augmenting the training data for wire segmentation networks. SF-VD leverages videos with limited annotations by independently modeling scene distribution and motion distribution. It first samples the scene distribution by generating 2D fluoroscopy images with wires positioned according to a specified input mask, and then samples the motion distribution by progressively generating subsequent frames, ensuring frame-to-frame coherence through a frame-consistency strategy. A segmentation-guided mechanism further refines the process by adjusting wire contrast, ensuring a diverse range of visibility in the synthesized image. Evaluation on a fluoroscopy dataset confirms the superior quality of the generated videos and shows significant improvements in guidewire segmentation.
Advancing Large Language Models for Spatiotemporal and Semantic Association Mining of Similar Environmental Events
Tian, Yuanyuan, Li, Wenwen, Hu, Lei, Chen, Xiao, Brook, Michael, Brubaker, Michael, Zhang, Fan, Liljedahl, Anna K.
Retrieval and recommendation are two essential tasks in modern search tools. This paper introduces a novel retrieval-reranking framework leveraging Large Language Models (LLMs) to enhance the spatiotemporal and semantic associated mining and recommendation of relevant unusual climate and environmental events described in news articles and web posts. This framework uses advanced natural language processing techniques to address the limitations of traditional manual curation methods in terms of high labor cost and lack of scalability. Specifically, we explore an optimized solution to employ cutting-edge embedding models for semantically analyzing spatiotemporal events (news) and propose a Geo-Time Re-ranking (GT-R) strategy that integrates multi-faceted criteria including spatial proximity, temporal association, semantic similarity, and category-instructed similarity to rank and identify similar spatiotemporal events. We apply the proposed framework to a dataset of four thousand Local Environmental Observer (LEO) Network events, achieving top performance in recommending similar events among multiple cutting-edge dense retrieval models. The search and recommendation pipeline can be applied to a wide range of similar data search tasks dealing with geospatial and temporal data. We hope that by linking relevant events, we can better aid the general public to gain an enhanced understanding of climate change and its impact on different communities.
EMOVA: Empowering Language Models to See, Hear and Speak with Vivid Emotions
Chen, Kai, Gou, Yunhao, Huang, Runhui, Liu, Zhili, Tan, Daxin, Xu, Jing, Wang, Chunwei, Zhu, Yi, Zeng, Yihan, Yang, Kuo, Wang, Dingdong, Xiang, Kun, Li, Haoyuan, Bai, Haoli, Han, Jianhua, Li, Xiaohui, Jin, Weike, Xie, Nian, Zhang, Yu, Kwok, James T., Zhao, Hengshuang, Liang, Xiaodan, Yeung, Dit-Yan, Chen, Xiao, Li, Zhenguo, Zhang, Wei, Liu, Qun, Yao, Jun, Hong, Lanqing, Hou, Lu, Xu, Hang
GPT-4o, an omni-modal model that enables vocal conversations with diverse emotions and tones, marks a milestone for omni-modal foundation models. However, empowering Large Language Models to perceive and generate images, texts, and speeches end-to-end with publicly available data remains challenging in the open-source community. Existing vision-language models rely on external tools for the speech processing, while speech-language models still suffer from limited or even without vision-understanding abilities. To address this gap, we propose EMOVA (EMotionally Omni-present Voice Assistant), to enable Large Language Models with end-to-end speech capabilities while maintaining the leading vision-language performance. With a semantic-acoustic disentangled speech tokenizer, we notice surprisingly that omni-modal alignment can further enhance vision-language and speech abilities compared with the corresponding bi-modal aligned counterparts. Moreover, a lightweight style module is proposed for flexible speech style controls (e.g., emotions and pitches). For the first time, EMOVA achieves state-of-the-art performance on both the vision-language and speech benchmarks, and meanwhile, supporting omni-modal spoken dialogue with vivid emotions.
Tailed Low-Rank Matrix Factorization for Similarity Matrix Completion
Ma, Changyi, Yu, Runsheng, Chen, Xiao, Zhang, Youzhi
Similarity matrix serves as a fundamental tool at the core of numerous downstream machine-learning tasks. However, missing data is inevitable and often results in an inaccurate similarity matrix. To address this issue, Similarity Matrix Completion (SMC) methods have been proposed, but they suffer from high computation complexity due to the Singular Value Decomposition (SVD) operation. To reduce the computation complexity, Matrix Factorization (MF) techniques are more explicit and frequently applied to provide a low-rank solution, but the exact low-rank optimal solution can not be guaranteed since it suffers from a non-convex structure. In this paper, we introduce a novel SMC framework that offers a more reliable and efficient solution. Specifically, beyond simply utilizing the unique Positive Semi-definiteness (PSD) property to guide the completion process, our approach further complements a carefully designed rank-minimization regularizer, aiming to achieve an optimal and low-rank solution. Based on the key insights that the underlying PSD property and Low-Rank property improve the SMC performance, we present two novel, scalable, and effective algorithms, SMCNN and SMCNmF, which investigate the PSD property to guide the estimation process and incorporate nonconvex low-rank regularizer to ensure the low-rank solution. Theoretical analysis ensures better estimation performance and convergence speed. Empirical results on real-world datasets demonstrate the superiority and efficiency of our proposed methods compared to various baseline methods.
ESALE: Enhancing Code-Summary Alignment Learning for Source Code Summarization
Fang, Chunrong, Sun, Weisong, Chen, Yuchen, Chen, Xiao, Wei, Zhao, Zhang, Quanjun, You, Yudu, Luo, Bin, Liu, Yang, Chen, Zhenyu
(Source) code summarization aims to automatically generate succinct natural language summaries for given code snippets. Such summaries play a significant role in promoting developers to understand and maintain code. Inspired by neural machine translation, deep learning-based code summarization techniques widely adopt an encoder-decoder framework, where the encoder transforms given code snippets into context vectors, and the decoder decodes context vectors into summaries. Recently, large-scale pre-trained models for source code are equipped with encoders capable of producing general context vectors and have achieved substantial improvements on code summarization. However, although they are usually trained mainly on code-focused tasks and can capture general code features, they still fall short in capturing specific features that need to be summarized. This paper proposes a novel approach to improve code summarization based on summary-focused tasks. Specifically, we exploit a multi-task learning paradigm to train the encoder on three summary-focused tasks to enhance its ability to learn code-summary alignment, including unidirectional language modeling (ULM), masked language modeling (MLM), and action word prediction (AWP). Unlike pre-trained models that mainly predict masked tokens in code snippets, we design ULM and MLM to predict masked words in summaries. Intuitively, predicting words based on given code snippets would help learn the code-summary alignment. Additionally, we introduce the domain-specific task AWP to enhance the ability of the encoder to learn the alignment between action words and code snippets. The extensive experiments on four datasets demonstrate that our approach, called ESALE significantly outperforms baselines in all three widely used metrics, including BLEU, METEOR, and ROUGE-L.
GenNBV: Generalizable Next-Best-View Policy for Active 3D Reconstruction
Chen, Xiao, Li, Quanyi, Wang, Tai, Xue, Tianfan, Pang, Jiangmiao
While recent advances in neural radiance field enable realistic digitization for large-scale scenes, the image-capturing process is still time-consuming and labor-intensive. Previous works attempt to automate this process using the Next-Best-View (NBV) policy for active 3D reconstruction. However, the existing NBV policies heavily rely on hand-crafted criteria, limited action space, or per-scene optimized representations. These constraints limit their cross-dataset generalizability. To overcome them, we propose GenNBV, an end-to-end generalizable NBV policy. Our policy adopts a reinforcement learning (RL)-based framework and extends typical limited action space to 5D free space. It empowers our agent drone to scan from any viewpoint, and even interact with unseen geometries during training. To boost the cross-dataset generalizability, we also propose a novel multi-source state embedding, including geometric, semantic, and action representations. We establish a benchmark using the Isaac Gym simulator with the Houses3K and OmniObject3D datasets to evaluate this NBV policy. Experiments demonstrate that our policy achieves a 98.26% and 97.12% coverage ratio on unseen building-scale objects from these datasets, respectively, outperforming prior solutions.