Chen, Xiangyi
Toward Communication Efficient Adaptive Gradient Method
Chen, Xiangyi, Li, Xiaoyun, Li, Ping
In recent years, distributed optimization is proven to be an effective approach to accelerate training of large scale machine learning models such as deep neural networks. With the increasing computation power of GPUs, the bottleneck of training speed in distributed training is gradually shifting from computation to communication. Meanwhile, in the hope of training machine learning models on mobile devices, a new distributed training paradigm called ``federated learning'' has become popular. The communication time in federated learning is especially important due to the low bandwidth of mobile devices. While various approaches to improve the communication efficiency have been proposed for federated learning, most of them are designed with SGD as the prototype training algorithm. While adaptive gradient methods have been proven effective for training neural nets, the study of adaptive gradient methods in federated learning is scarce. In this paper, we propose an adaptive gradient method that can guarantee both the convergence and the communication efficiency for federated learning.
Private Stochastic Non-Convex Optimization: Adaptive Algorithms and Tighter Generalization Bounds
Zhou, Yingxue, Chen, Xiangyi, Hong, Mingyi, Wu, Zhiwei Steven, Banerjee, Arindam
We study differentially private (DP) algorithms for stochastic non-convex optimization. In this problem, the goal is to minimize the population loss over a $p$-dimensional space given $n$ i.i.d. samples drawn from a distribution. We improve upon the population gradient bound of ${\sqrt{p}}/{\sqrt{n}}$ from prior work and obtain a sharper rate of $\sqrt[4]{p}/\sqrt{n}$. We obtain this rate by providing the first analyses on a collection of private gradient-based methods, including adaptive algorithms DP RMSProp and DP Adam. Our proof technique leverages the connection between differential privacy and adaptive data analysis to bound gradient estimation error at every iterate, which circumvents the worse generalization bound from the standard uniform convergence argument. Finally, we evaluate the proposed algorithms on two popular deep learning tasks and demonstrate the empirical advantages of DP adaptive gradient methods over standard DP SGD.
Understanding Gradient Clipping in Private SGD: A Geometric Perspective
Chen, Xiangyi, Wu, Zhiwei Steven, Hong, Mingyi
Deep learning models are increasingly popular in many machine learning applications where the training data may contain sensitive information. To provide formal and rigorous privacy guarantee, many learning systems now incorporate differential privacy by training their models with (differentially) private SGD. A key step in each private SGD update is gradient clipping that shrinks the gradient of an individual example whenever its L2 norm exceeds some threshold. We first demonstrate how gradient clipping can prevent SGD from converging to stationary point. We then provide a theoretical analysis that fully quantifies the clipping bias on convergence with a disparity measure between the gradient distribution and a geometrically symmetric distribution. Our empirical evaluation further suggests that the gradient distributions along the trajectory of private SGD indeed exhibit symmetric structure that favors convergence. Together, our results provide an explanation why private SGD with gradient clipping remains effective in practice despite its potential clipping bias. Finally, we develop a new perturbation-based technique that can provably correct the clipping bias even for instances with highly asymmetric gradient distributions.
ZO-AdaMM: Zeroth-Order Adaptive Momentum Method for Black-Box Optimization
Chen, Xiangyi, Liu, Sijia, Xu, Kaidi, Li, Xingguo, Lin, Xue, Hong, Mingyi, Cox, David
The adaptive momentum method (AdaMM), which uses past gradients to update descent directions and learning rates simultaneously, has become one of the most popular first-order optimization methods for solving machine learning problems. However, AdaMM is not suited for solving black-box optimization problems, where explicit gradient forms are difficult or infeasible to obtain. In this paper, we propose a zeroth-order AdaMM (ZO-AdaMM) algorithm, that generalizes AdaMM to the gradient-free regime. We show that the convergence rate of ZO-AdaMM for both convex and nonconvex optimization is roughly a factor of $O(\sqrt{d})$ worse than that of the first-order AdaMM algorithm, where $d$ is problem size. In particular, we provide a deep understanding on why Mahalanobis distance matters in convergence of ZO-AdaMM and other AdaMM-type methods.
Min-Max Optimization without Gradients: Convergence and Applications to Adversarial ML
Liu, Sijia, Lu, Songtao, Chen, Xiangyi, Feng, Yao, Xu, Kaidi, Al-Dujaili, Abdullah, Hong, Minyi, Obelilly, Una-May
In this paper, we study the problem of constrained robust (min-max) optimization ina black-box setting, where the desired optimizer cannot access the gradients of the objective function but may query its values. We present a principled optimization framework, integrating a zeroth-order (ZO) gradient estimator with an alternating projected stochastic gradient descent-ascent method, where the former only requires a small number of function queries and the later needs just one-step descent/ascent update. We show that the proposed framework, referred to as ZO-Min-Max, has a sub-linear convergence rate under mild conditions and scales gracefully with problem size. From an application side, we explore a promising connection between black-box min-max optimization and black-box evasion and poisoning attacks in adversarial machine learning (ML). Our empirical evaluations on these use cases demonstrate the effectiveness of our approach and its scalability to dimensions that prohibit using recent black-box solvers.
Distributed Training with Heterogeneous Data: Bridging Median- and Mean-Based Algorithms
Chen, Xiangyi, Chen, Tiancong, Sun, Haoran, Wu, Zhiwei Steven, Hong, Mingyi
Recently, there is a growing interest in the study of median-based algorithms for distributed non-convex optimization. Two prominent such algorithms include signSGD with majority vote, an effective approach for communication reduction via 1-bit compression on the local gradients, and medianSGD, an algorithm recently proposed to ensure robustness against Byzantine workers. The convergence analyses for these algorithms critically rely on the assumption that all the distributed data are drawn iid from the same distribution. However, in applications such as Federated Learning, the data across different nodes or machines can be inherently heterogeneous, which violates such an iid assumption. This work analyzes signSGD and medianSGD in distributed settings with heterogeneous data. We show that these algorithms are non-convergent whenever there is some disparity between the expected median and mean over the local gradients. To overcome this gap, we provide a novel gradient correction mechanism that perturbs the local gradients with noise, together with a series results that provable close the gap between mean and median of the gradients. The proposed methods largely preserve nice properties of these methods, such as the low per-iteration communication complexity of signSGD, and further enjoy global convergence to stationary solutions. Our perturbation technique can be of independent interest when one wishes to estimate mean through a median estimator.
On the Convergence of A Class of Adam-Type Algorithms for Non-Convex Optimization
Chen, Xiangyi, Liu, Sijia, Sun, Ruoyu, Hong, Mingyi
This paper studies a class of adaptive gradient based momentum algorithms that update the search directions and learning rates simultaneously using past gradients. This class, which we refer to as the "Adam-type", includes the popular algorithms such as the Adam, AMSGrad and AdaGrad. Despite their popularity in training deep neural networks, the convergence of these algorithms for solving nonconvex problems remains an open question. This paper provides a set of mild sufficient conditions that guarantee the convergence for the Adam-type methods. We prove that under our derived conditions, these methods can achieve the convergence rate of order $O(\log{T}/\sqrt{T})$ for nonconvex stochastic optimization. We show the conditions are essential in the sense that violating them may make the algorithm diverge. Moreover, we propose and analyze a class of (deterministic) incremental adaptive gradient algorithms, which has the same $O(\log{T}/\sqrt{T})$ convergence rate. Our study could also be extended to a broader class of adaptive gradient methods in machine learning and optimization.