Chen, Winston
Recent Advances, Applications and Open Challenges in Machine Learning for Health: Reflections from Research Roundtables at ML4H 2024 Symposium
Adibi, Amin, Cao, Xu, Ji, Zongliang, Kaur, Jivat Neet, Chen, Winston, Healey, Elizabeth, Nuwagira, Brighton, Ye, Wenqian, Woollard, Geoffrey, Xu, Maxwell A, Cui, Hejie, Xi, Johnny, Chang, Trenton, Bikia, Vasiliki, Zhang, Nicole, Noori, Ayush, Xia, Yuan, Hossain, Md. Belal, Frank, Hanna A., Peluso, Alina, Pu, Yuan, Shen, Shannon Zejiang, Wu, John, Fallahpour, Adibvafa, Mahbub, Sazan, Duncan, Ross, Zhang, Yuwei, Cao, Yurui, Xu, Zuheng, Craig, Michael, Krishnan, Rahul G., Beheshti, Rahmatollah, Rehg, James M., Karim, Mohammad Ehsanul, Coffee, Megan, Celi, Leo Anthony, Fries, Jason Alan, Sadatsafavi, Mohsen, Shung, Dennis, McWeeney, Shannon, Dafflon, Jessica, Jabbour, Sarah
The fourth Machine Learning for Health (ML4H) symposium was held in person on December 15th and 16th, 2024, in the traditional, ancestral, and unceded territories of the Musqueam, Squamish, and Tsleil-Waututh Nations in Vancouver, British Columbia, Canada. The symposium included research roundtable sessions to foster discussions between participants and senior researchers on timely and relevant topics for the ML4H community. The organization of the research roundtables at the conference involved 13 senior and 27 junior chairs across 13 tables. Each roundtable session included an invited senior chair (with substantial experience in the field), junior chairs (responsible for facilitating the discussion), and attendees from diverse backgrounds with an interest in the session's topic.
DeepROCK: Error-controlled interaction detection in deep neural networks
Chen, Winston, Noble, William Stafford, Lu, Yang Young
The complexity of deep neural networks (DNNs) makes them powerful but also makes them challenging to interpret, hindering their applicability in error-intolerant domains. Existing methods attempt to reason about the internal mechanism of DNNs by identifying feature interactions that influence prediction outcomes. However, such methods typically lack a systematic strategy to prioritize interactions while controlling confidence levels, making them difficult to apply in practice for scientific discovery and hypothesis validation. In this paper, we introduce a method, called DeepROCK, to address this limitation by using knockoffs, which are dummy variables that are designed to mimic the dependence structure of a given set of features while being conditionally independent of the response. Together with a novel DNN architecture involving a pairwise-coupling layer, DeepROCK jointly controls the false discovery rate (FDR) and maximizes statistical power. In addition, we identify a challenge in correctly controlling FDR using off-the-shelf feature interaction importance measures. DeepROCK overcomes this challenge by proposing a calibration procedure applied to existing interaction importance measures to make the FDR under control at a target level. Finally, we validate the effectiveness of DeepROCK through extensive experiments on simulated and real datasets.