Chen, William
ESPnet-SDS: Unified Toolkit and Demo for Spoken Dialogue Systems
Arora, Siddhant, Peng, Yifan, Shi, Jiatong, Tian, Jinchuan, Chen, William, Bharadwaj, Shikhar, Futami, Hayato, Kashiwagi, Yosuke, Tsunoo, Emiru, Shimizu, Shuichiro, Srivastav, Vaibhav, Watanabe, Shinji
Advancements in audio foundation models (FMs) have fueled interest in end-to-end (E2E) spoken dialogue systems, but different web interfaces for each system makes it challenging to compare and contrast them effectively. Motivated by this, we introduce an open-source, user-friendly toolkit designed to build unified web interfaces for various cascaded and E2E spoken dialogue systems. Our demo further provides users with the option to get on-the-fly automated evaluation metrics such as (1) latency, (2) ability to understand user input, (3) coherence, diversity, and relevance of system response, and (4) intelligibility and audio quality of system output. Using the evaluation metrics, we compare various cascaded and E2E spoken dialogue systems with a human-human conversation dataset as a proxy. Our analysis demonstrates that the toolkit allows researchers to effortlessly compare and contrast different technologies, providing valuable insights such as current E2E systems having poorer audio quality and less diverse responses. An example demo produced using our toolkit is publicly available here: https://huggingface.co/spaces/Siddhant/Voice_Assistant_Demo.
Proactive Privacy Amnesia for Large Language Models: Safeguarding PII with Negligible Impact on Model Utility
Kuo, Martin, Zhang, Jingyang, Zhang, Jianyi, Tang, Minxue, DiValentin, Louis, Ding, Aolin, Sun, Jingwei, Chen, William, Hass, Amin, Chen, Tianlong, Chen, Yiran, Li, Hai
With the rise of large language models (LLMs), increasing research has recognized their risk of leaking personally identifiable information (PII) under malicious attacks. Although efforts have been made to protect PII in LLMs, existing methods struggle to balance privacy protection with maintaining model utility. In this paper, inspired by studies of amnesia in cognitive science, we propose a novel approach, Proactive Privacy Amnesia (PPA), to safeguard PII in LLMs while preserving their utility. This mechanism works by actively identifying and forgetting key memories most closely associated with PII in sequences, followed by a memory implanting using suitable substitute memories to maintain the LLM's functionality. We conduct evaluations across multiple models to protect common PII, such as phone numbers and physical addresses, against prevalent PII-targeted attacks, demonstrating the superiority of our method compared with other existing defensive techniques. The results show that our PPA method completely eliminates the risk of phone number exposure by 100% and significantly reduces the risk of physical address exposure by 9.8% - 87.6%, all while maintaining comparable model utility performance. Large Language Models (LLMs) (Touvron et al., 2023; Achiam et al., 2023; Team et al., 2023; Dubey et al., 2024) have achieved remarkable success in recent years, with their wide adoption either as general-purpose models or, after fine-tuning, as specialized and personal assistants. Despite their success, LLMs with huge parameter counts and great capacity in the meantime exhibit the concerning "memorization" phenomenons (Carlini et al., 2019; 2021), i.e., they can precisely memorize some training data. Such memorization is vulnerable to various attacks (e.g., membership inference attacks and data extraction attacks) and risks severe privacy breaches. One of the most serious concerns comes from the attacks that aim to extract personal identifiable information (PII) memorized by the models, which compromise users' privacy and are likely to cause real-world harm consequently. To defend against such PII or data extraction attacks, several machine unlearning techniques have been applied to LLMs. However, existing methods typically fall short in terms of the trade-off between the defense performance and model utility. For example, most unlearning approaches are based on gradient ascent (Jang et al., 2022; Wang et al., 2024) and often adversely affect model functionalities to an extent where the model cannot handle their original tasks anymore and thus becomes no longer useful.
ESPnet-SpeechLM: An Open Speech Language Model Toolkit
Tian, Jinchuan, Shi, Jiatong, Chen, William, Arora, Siddhant, Masuyama, Yoshiki, Maekaku, Takashi, Wu, Yihan, Peng, Junyi, Bharadwaj, Shikhar, Zhao, Yiwen, Cornell, Samuele, Peng, Yifan, Yue, Xiang, Yang, Chao-Han Huck, Neubig, Graham, Watanabe, Shinji
We present ESPnet-SpeechLM, an open toolkit designed to democratize the development of speech language models (SpeechLMs) and voice-driven agentic applications. The toolkit standardizes speech processing tasks by framing them as universal sequential modeling problems, encompassing a cohesive workflow of data preprocessing, pre-training, inference, and task evaluation. With ESPnet-SpeechLM, users can easily define task templates and configure key settings, enabling seamless and streamlined SpeechLM development. The toolkit ensures flexibility, efficiency, and scalability by offering highly configurable modules for every stage of the workflow. To illustrate its capabilities, we provide multiple use cases demonstrating how competitive SpeechLMs can be constructed with ESPnet-SpeechLM, including a 1.7B-parameter model pre-trained on both text and speech tasks, across diverse benchmarks. The toolkit and its recipes are fully transparent and reproducible at: https://github.com/espnet/espnet/tree/speechlm.
OWLS: Scaling Laws for Multilingual Speech Recognition and Translation Models
Chen, William, Tian, Jinchuan, Peng, Yifan, Yan, Brian, Yang, Chao-Han Huck, Watanabe, Shinji
Neural scaling laws offer valuable insights for designing robust sequence processing architectures. While these laws have been extensively characterized in other modalities, their behavior in speech remains comparatively underexplored. In this work, we introduce OWLS, an open-access, reproducible suite of multilingual speech recognition and translation models spanning 0.25B to 18B parameters, with the 18B version being the largest speech model, to the best of our knowledge. OWLS leverages up to 360K hours of public speech data across 150 languages, enabling a systematic investigation into how data, model, and compute scaling each influence performance in multilingual speech tasks. We use OWLS to derive neural scaling laws, showing how final performance can be reliably predicted when scaling. One of our key findings is that scaling enhances performance on low-resource languages/dialects, helping to mitigate bias and improve the accessibility of speech technologies. Finally, we show how OWLS can be used to power new research directions by discovering emergent abilities in large-scale speech models. Model checkpoints will be released on https://huggingface.co/collections/espnet/owls-scaling-laws-for-speech-recognition-and-translation-67ab7f991c194065f057ce8d for future studies.
Dynamic-SUPERB Phase-2: A Collaboratively Expanding Benchmark for Measuring the Capabilities of Spoken Language Models with 180 Tasks
Huang, Chien-yu, Chen, Wei-Chih, Yang, Shu-wen, Liu, Andy T., Li, Chen-An, Lin, Yu-Xiang, Tseng, Wei-Cheng, Diwan, Anuj, Shih, Yi-Jen, Shi, Jiatong, Chen, William, Chen, Xuanjun, Hsiao, Chi-Yuan, Peng, Puyuan, Wang, Shih-Heng, Kuan, Chun-Yi, Lu, Ke-Han, Chang, Kai-Wei, Yang, Chih-Kai, Ritter-Gutierrez, Fabian, Chuang, Ming To, Huang, Kuan-Po, Arora, Siddhant, Lin, You-Kuan, Yeo, Eunjung, Chang, Kalvin, Chien, Chung-Ming, Choi, Kwanghee, Hsieh, Cheng-Hsiu, Lin, Yi-Cheng, Yu, Chee-En, Chiu, I-Hsiang, Guimarรฃes, Heitor R., Han, Jionghao, Lin, Tzu-Quan, Lin, Tzu-Yuan, Chang, Homu, Chang, Ting-Wu, Chen, Chun Wei, Chen, Shou-Jen, Chen, Yu-Hua, Cheng, Hsi-Chun, Dhawan, Kunal, Fang, Jia-Lin, Fang, Shi-Xin, Chiang, Kuan-Yu Fang, Fu, Chi An, Hsiao, Hsien-Fu, Hsu, Ching Yu, Huang, Shao-Syuan, Wei, Lee Chen, Lin, Hsi-Che, Lin, Hsuan-Hao, Lin, Hsuan-Ting, Lin, Jian-Ren, Liu, Ting-Chun, Lu, Li-Chun, Pai, Tsung-Min, Pasad, Ankita, Kuan, Shih-Yun Shan, Shon, Suwon, Tang, Yuxun, Tsai, Yun-Shao, Wei, Jui-Chiang, Wei, Tzu-Chieh, Wu, Chengxi, Wu, Dien-Ruei, Yang, Chao-Han Huck, Yang, Chieh-Chi, Yip, Jia Qi, Yuan, Shao-Xiang, Noroozi, Vahid, Chen, Zhehuai, Wu, Haibin, Livescu, Karen, Harwath, David, Watanabe, Shinji, Lee, Hung-yi
Multimodal foundation models, such as Gemini and ChatGPT, have revolutionized human-machine interactions by seamlessly integrating various forms of data. Developing a universal spoken language model that comprehends a wide range of natural language instructions is critical for bridging communication gaps and facilitating more intuitive interactions. However, the absence of a comprehensive evaluation benchmark poses a significant challenge. We present Dynamic-SUPERB Phase-2, an open and evolving benchmark for the comprehensive evaluation of instruction-based universal speech models. Building upon the first generation, this second version incorporates 125 new tasks contributed collaboratively by the global research community, expanding the benchmark to a total of 180 tasks, making it the largest benchmark for speech and audio evaluation. While the first generation of Dynamic-SUPERB was limited to classification tasks, Dynamic-SUPERB Phase-2 broadens its evaluation capabilities by introducing a wide array of novel and diverse tasks, including regression and sequence generation, across speech, music, and environmental audio. Evaluation results indicate that none of the models performed well universally. SALMONN-13B excelled in English ASR, while WavLLM demonstrated high accuracy in emotion recognition, but current models still require further innovations to handle a broader range of tasks. We will soon open-source all task data and the evaluation pipeline.
Findings of the IWSLT 2024 Evaluation Campaign
Ahmad, Ibrahim Said, Anastasopoulos, Antonios, Bojar, Ondลej, Borg, Claudia, Carpuat, Marine, Cattoni, Roldano, Cettolo, Mauro, Chen, William, Dong, Qianqian, Federico, Marcello, Haddow, Barry, Javorskรฝ, Dรกvid, Krubiลski, Mateusz, Lam, Tsz Kin, Ma, Xutai, Mathur, Prashant, Matusov, Evgeny, Maurya, Chandresh, McCrae, John, Murray, Kenton, Nakamura, Satoshi, Negri, Matteo, Niehues, Jan, Niu, Xing, Ojha, Atul Kr., Ortega, John, Papi, Sara, Polรกk, Peter, Pospรญลกil, Adam, Pecina, Pavel, Salesky, Elizabeth, Sethiya, Nivedita, Sarkar, Balaram, Shi, Jiatong, Sikasote, Claytone, Sperber, Matthias, Stรผker, Sebastian, Sudoh, Katsuhito, Thompson, Brian, Turchi, Marco, Waibel, Alex, Watanabe, Shinji, Wilken, Patrick, Zemรกnek, Petr, Zevallos, Rodolfo
This paper reports on the shared tasks organized by the 21st IWSLT Conference. The shared tasks address 7 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, dialect and low-resource speech translation, and Indic languages. The shared tasks attracted 18 teams whose submissions are documented in 26 system papers. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.
Robotic Control via Embodied Chain-of-Thought Reasoning
Zawalski, Michaล, Chen, William, Pertsch, Karl, Mees, Oier, Finn, Chelsea, Levine, Sergey
A key limitation of learned robot control policies is their inability to generalize outside their training data. Recent works on vision-language-action models (VLAs) have shown that the use of large, internet pre-trained vision-language models as the backbone of learned robot policies can substantially improve their robustness and generalization ability. Yet, one of the most exciting capabilities of large vision-language models in other domains is their ability to reason iteratively through complex problems. Can that same capability be brought into robotics to allow policies to improve performance by reasoning about a given task before acting? Naive use of "chain-of-thought" (CoT) style prompting is significantly less effective with standard VLAs because of the relatively simple training examples that are available to them. Additionally, purely semantic reasoning about sub-tasks, as is common in regular CoT, is insufficient for robot policies that need to ground their reasoning in sensory observations and the robot state. To this end, we introduce Embodied Chain-of-Thought Reasoning (ECoT) for VLAs, in which we train VLAs to perform multiple steps of reasoning about plans, sub-tasks, motions, and visually grounded features like object bounding boxes and end effector positions, before predicting the robot action. We design a scalable pipeline for generating synthetic training data for ECoT on large robot datasets. We demonstrate, that ECoT increases the absolute success rate of OpenVLA, the current strongest open-source VLA policy, by 28% across challenging generalization tasks, without any additional robot training data. Additionally, ECoT makes it easier for humans to interpret a policy's failures and correct its behavior using natural language.
Towards Robust Speech Representation Learning for Thousands of Languages
Chen, William, Zhang, Wangyou, Peng, Yifan, Li, Xinjian, Tian, Jinchuan, Shi, Jiatong, Chang, Xuankai, Maiti, Soumi, Livescu, Karen, Watanabe, Shinji
Self-supervised learning (SSL) has helped extend speech technologies to more languages by reducing the need for labeled data. However, models are still far from supporting the world's 7000+ languages. We propose XEUS, a Cross-lingual Encoder for Universal Speech, trained on over 1 million hours of data across 4057 languages, extending the language coverage of SSL models 4-fold. We combine 1 million hours of speech from existing publicly accessible corpora with a newly created corpus of 7400+ hours from 4057 languages, which will be publicly released. To handle the diverse conditions of multilingual speech data, we augment the typical SSL masked prediction approach with a novel dereverberation objective, increasing robustness. We evaluate XEUS on several benchmarks, and show that it consistently outperforms or achieves comparable results to state-of-the-art (SOTA) SSL models across a variety of tasks. XEUS sets a new SOTA on the ML-SUPERB benchmark: it outperforms MMS 1B and w2v-BERT 2.0 v2 by 0.8% and 4.4% respectively, despite having less parameters or pre-training data. Checkpoints, code, and data are found in https://www.wavlab.org/activities/2024/xeus/.
Nollywood: Let's Go to the Movies!
Ortega, John E., Ahmad, Ibrahim Said, Chen, William
Nollywood, based on the idea of Bollywood from India, is a series of outstanding movies that originate from Nigeria. Unfortunately, while the movies are in English, they are hard to understand for many native speakers due to the dialect of English that is spoken. In this article, we accomplish two goals: (1) create a phonetic sub-title model that is able to translate Nigerian English speech to American English and (2) use the most advanced toxicity detectors to discover how toxic the speech is. Our aim is to highlight the text in these videos which is often times ignored for lack of dialectal understanding due the fact that many people in Nigeria speak a native language like Hausa at home.
On the Evaluation of Speech Foundation Models for Spoken Language Understanding
Arora, Siddhant, Pasad, Ankita, Chien, Chung-Ming, Han, Jionghao, Sharma, Roshan, Jung, Jee-weon, Dhamyal, Hira, Chen, William, Shon, Suwon, Lee, Hung-yi, Livescu, Karen, Watanabe, Shinji
The Spoken Language Understanding Evaluation (SLUE) suite of benchmark tasks was recently introduced to address the need for open resources and benchmarking of complex spoken language understanding (SLU) tasks, including both classification and sequence generation tasks, on natural speech. The benchmark has demonstrated preliminary success in using pre-trained speech foundation models (SFM) for these SLU tasks. However, the community still lacks a fine-grained understanding of the comparative utility of different SFMs. Inspired by this, we ask: which SFMs offer the most benefits for these complex SLU tasks, and what is the most effective approach for incorporating these SFMs? To answer this, we perform an extensive evaluation of multiple supervised and self-supervised SFMs using several evaluation protocols: (i) frozen SFMs with a lightweight prediction head, (ii) frozen SFMs with a complex prediction head, and (iii) fine-tuned SFMs with a lightweight prediction head. Although the supervised SFMs are pre-trained on much more speech recognition data (with labels), they do not always outperform self-supervised SFMs; the latter tend to perform at least as well as, and sometimes better than, supervised SFMs, especially on the sequence generation tasks in SLUE. While there is no universally optimal way of incorporating SFMs, the complex prediction head gives the best performance for most tasks, although it increases the inference time. We also introduce an open-source toolkit and performance leaderboard, SLUE-PERB, for these tasks and modeling strategies.