Chen, Weixing
Aligning Cyber Space with Physical World: A Comprehensive Survey on Embodied AI
Liu, Yang, Chen, Weixing, Bai, Yongjie, Luo, Jingzhou, Song, Xinshuai, Jiang, Kaixuan, Li, Zhida, Zhao, Ganlong, Lin, Junyi, Li, Guanbin, Gao, Wen, Lin, Liang
Embodied Artificial Intelligence (Embodied AI) is crucial for achieving Artificial General Intelligence (AGI) and serves as a foundation for various applications that bridge cyberspace and the physical world. Recently, the emergence of Multi-modal Large Models (MLMs) and World Models (WMs) have attracted significant attention due to their remarkable perception, interaction, and reasoning capabilities, making them a promising architecture for the brain of embodied agents. However, there is no comprehensive survey for Embodied AI in the era of MLMs. In this survey, we give a comprehensive exploration of the latest advancements in Embodied AI. Our analysis firstly navigates through the forefront of representative works of embodied robots and simulators, to fully understand the research focuses and their limitations. Then, we analyze four main research targets: 1) embodied perception, 2) embodied interaction, 3) embodied agent, and 4) sim-to-real adaptation, covering the state-of-the-art methods, essential paradigms, and comprehensive datasets. Additionally, we explore the complexities of MLMs in virtual and real embodied agents, highlighting their significance in facilitating interactions in dynamic digital and physical environments. Finally, we summarize the challenges and limitations of embodied AI and discuss their potential future directions. We hope this survey will serve as a foundational reference for the research community and inspire continued innovation. The associated project can be found at https://github.com/HCPLab-SYSU/Embodied_AI_Paper_List.
Towards CausalGPT: A Multi-Agent Approach for Faithful Knowledge Reasoning via Promoting Causal Consistency in LLMs
Tang, Ziyi, Wang, Ruilin, Chen, Weixing, Wang, Keze, Liu, Yang, Chen, Tianshui, Lin, Liang
Despite advancements in LLMs, knowledge-based reasoning remains a longstanding issue due to the fragility of knowledge recall and inference. Existing methods primarily encourage LLMs to autonomously plan and solve problems or to extensively sample reasoning chains without addressing the conceptual and inferential fallacies. Attempting to alleviate inferential fallacies and drawing inspiration from multi-agent collaboration, we present a framework to increase faithfulness and causality for knowledge-based reasoning. Specifically, we propose to employ multiple intelligent agents (i.e., reasoners and an evaluator) to work collaboratively in a reasoning-and-consensus paradigm for elevated reasoning faithfulness. The reasoners focus on providing solutions with human-like causality to solve open-domain problems. On the other hand, the \textit{evaluator} agent scrutinizes if a solution is deducible from a non-causal perspective and if it still holds when challenged by a counterfactual candidate. According to the extensive and comprehensive evaluations on a variety of knowledge reasoning tasks (e.g., science question answering and commonsense reasoning), our framework outperforms all compared state-of-the-art approaches by large margins.