Goto

Collaborating Authors

 Chen, Wei


Combinatorial Multivariant Multi-Armed Bandits with Applications to Episodic Reinforcement Learning and Beyond

arXiv.org Artificial Intelligence

We introduce a novel framework of combinatorial multi-armed bandits (CMAB) with multivariant and probabilistically triggering arms (CMAB-MT), where the outcome of each arm is a $d$-dimensional multivariant random variable and the feedback follows a general arm triggering process. Compared with existing CMAB works, CMAB-MT not only enhances the modeling power but also allows improved results by leveraging distinct statistical properties for multivariant random variables. For CMAB-MT, we propose a general 1-norm multivariant and triggering probability-modulated smoothness condition, and an optimistic CUCB-MT algorithm built upon this condition. Our framework can include many important problems as applications, such as episodic reinforcement learning (RL) and probabilistic maximum coverage for goods distribution, all of which meet the above smoothness condition and achieve matching or improved regret bounds compared to existing works. Through our new framework, we build the first connection between the episodic RL and CMAB literature, by offering a new angle to solve the episodic RL through the lens of CMAB, which may encourage more interactions between these two important directions.


No Free Lunch Theorem for Privacy-Preserving LLM Inference

arXiv.org Artificial Intelligence

Individuals and businesses have been significantly benefited by Large Language Models (LLMs) including PaLM, Gemini and ChatGPT in various ways. For example, LLMs enhance productivity, reduce costs, and enable us to focus on more valuable tasks. Furthermore, LLMs possess the capacity to sift through extensive datasets, uncover underlying patterns, and furnish critical insights that propel the frontiers of technology and science. However, LLMs also pose privacy concerns. Users' interactions with LLMs may expose their sensitive personal or company information. A lack of robust privacy safeguards and legal frameworks could permit the unwarranted intrusion or improper handling of individual data, thereby risking infringements of privacy and the theft of personal identities. To ensure privacy, it is essential to minimize the dependency between shared prompts and private information. Various randomization approaches have been proposed to protect prompts' privacy, but they may incur utility loss compared to unprotected LLMs prompting. Therefore, it is essential to evaluate the balance between the risk of privacy leakage and loss of utility when conducting effective protection mechanisms. The current study develops a framework for inferring privacy-protected Large Language Models (LLMs) and lays down a solid theoretical basis for examining the interplay between privacy preservation and utility. The core insight is encapsulated within a theorem that is called as the NFL (abbreviation of the word No-Free-Lunch) Theorem.


Can Graph Learning Improve Task Planning?

arXiv.org Artificial Intelligence

Task planning is emerging as an important research topic alongside the development of large language models (LLMs). It aims to break down complex user requests into solvable sub-tasks, thereby fulfilling the original requests. In this context, the sub-tasks can be naturally viewed as a graph, where the nodes represent the sub-tasks, and the edges denote the dependencies among them. Consequently, task planning is a decision-making problem that involves selecting a connected path or subgraph within the corresponding graph and invoking it. In this paper, we explore graph learning-based methods for task planning, a direction that is orthogonal to the prevalent focus on prompt design. Our interest in graph learning stems from a theoretical discovery: the biases of attention and auto-regressive loss impede LLMs' ability to effectively navigate decision-making on graphs, which is adeptly addressed by graph neural networks (GNNs). This theoretical insight led us to integrate GNNs with LLMs to enhance overall performance. Extensive experiments demonstrate that GNN-based methods surpass existing solutions even without training, and minimal training can further enhance their performance. Additionally, our approach complements prompt engineering and fine-tuning techniques, with performance further enhanced by improved prompts or a fine-tuned model.


UrbanVLP: Multi-Granularity Vision-Language Pretraining for Urban Region Profiling

arXiv.org Artificial Intelligence

Urban region profiling aims to learn a low-dimensional representation of a given urban area while preserving its characteristics, such as demographics, infrastructure, and economic activities, for urban planning and development. However, prevalent pretrained models, particularly those reliant on satellite imagery, face dual challenges. Firstly, concentrating solely on macro-level patterns from satellite data may introduce bias, lacking nuanced details at micro levels, such as architectural details at a place.Secondly, the lack of interpretability in pretrained models limits their utility in providing transparent evidence for urban planning. In response to these issues, we devise a novel framework entitled UrbanVLP based on Vision-Language Pretraining. Our UrbanVLP seamlessly integrates multi-granularity information from both macro (satellite) and micro (street-view) levels, overcoming the limitations of prior pretrained models. Moreover, it introduces automatic text generation and calibration, elevating interpretability in downstream applications by producing high-quality text descriptions of urban imagery. Rigorous experiments conducted across six urban indicator prediction tasks underscore its superior performance.


Self-Distillation Bridges Distribution Gap in Language Model Fine-Tuning

arXiv.org Artificial Intelligence

The surge in Large Language Models (LLMs) has revolutionized natural language processing, but fine-tuning them for specific tasks often encounters challenges in balancing performance and preserving general instruction-following abilities. In this paper, we posit that the distribution gap between task datasets and the LLMs serves as the primary underlying cause. To address the problem, we introduce Self-Distillation Fine-Tuning (SDFT), a novel approach that bridges the distribution gap by guiding fine-tuning with a distilled dataset generated by the model itself to match its original distribution. Experimental results on the Llama-2-chat model across various benchmarks demonstrate that SDFT effectively mitigates catastrophic forgetting while achieving comparable or superior performance on downstream tasks compared to the vanilla fine-tuning. Moreover, SDFT demonstrates the potential to maintain the helpfulness and safety alignment of LLMs. Our code is available at https://github.com/sail-sg/sdft.


ALPINE: Unveiling the Planning Capability of Autoregressive Learning in Language Models

arXiv.org Artificial Intelligence

In this paper, we present the findings of our Project ALPINE which stands for ``Autoregressive Learning for Planning In NEtworks." Project ALPINE initiates a theoretical investigation into the development of planning capabilities in Transformer-based language models through their autoregressive learning mechanisms, aiming to identify any potential limitations in their planning abilities. We abstract planning as a network path-finding task where the objective is to generate a valid path from a specified source node to a designated target node. In terms of expressiveness, we show that the Transformer is capable of executing path-finding by embedding the adjacency and reachability matrices within its weights. Our theoretical analysis of the gradient-based learning dynamic of the Transformer reveals that the Transformer is capable of learning both the adjacency matrix and a limited form of the reachability matrix. These theoretical insights are then validated through experiments, which demonstrate that the Transformer indeed learns the adjacency matrix and an incomplete reachability matrix, which aligns with the predictions made in our theoretical analysis. Additionally, when applying our methodology to a real-world planning benchmark, called Blocksworld, our observations remain consistent. Our theoretical and empirical analyses further unveil a potential limitation of Transformer in path-finding: it cannot identify reachability relationships through transitivity, and thus would fail when path concatenation is needed to generate a path. In summary, our findings shed new light on how the internal mechanisms of autoregressive learning enable planning in networks. This study may contribute to our understanding of the general planning capabilities in other related domains.


Feature-based Low-Rank Compression of Large Language Models via Bayesian Optimization

arXiv.org Artificial Intelligence

In recent years, large language models (LLMs) have driven advances in natural language processing. Still, their growing scale has increased the computational burden, necessitating a balance between efficiency and performance. Low-rank compression, a promising technique, reduces non-essential parameters by decomposing weight matrices into products of two low-rank matrices. Yet, its application in LLMs has not been extensively studied. The key to low-rank compression lies in low-rank factorization and low-rank dimensions allocation. To address the challenges of low-rank compression in LLMs, we conduct empirical research on the low-rank characteristics of large models. We propose a low-rank compression method suitable for LLMs. This approach involves precise estimation of feature distributions through pooled covariance matrices and a Bayesian optimization strategy for allocating low-rank dimensions. Experiments on the LLaMA-2 models demonstrate that our method outperforms existing strong structured pruning and low-rank compression techniques in maintaining model performance at the same compression ratio.


VideoQA-SC: Adaptive Semantic Communication for Video Question Answering

arXiv.org Artificial Intelligence

Although semantic communication (SC) has shown its potential in efficiently transmitting multi-modal data such as text, speeches and images, SC for videos has focused primarily on pixel-level reconstruction. However, these SC systems may be suboptimal for downstream intelligent tasks. Moreover, SC systems without pixel-level video reconstruction present advantages by achieving higher bandwidth efficiency and real-time performance of various intelligent tasks. The difficulty in such system design lies in the extraction of task-related compact semantic representations and their accurate delivery over noisy channels. In this paper, we propose an end-to-end SC system for video question answering (VideoQA) tasks called VideoQA-SC. Our goal is to accomplish VideoQA tasks directly based on video semantics over noisy or fading wireless channels, bypassing the need for video reconstruction at the receiver. To this end, we develop a spatiotemporal semantic encoder for effective video semantic extraction, and a learning-based bandwidth-adaptive deep joint source-channel coding (DJSCC) scheme for efficient and robust video semantic transmission. Experiments demonstrate that VideoQA-SC outperforms traditional and advanced DJSCC-based SC systems that rely on video reconstruction at the receiver under a wide range of channel conditions and bandwidth constraints. In particular, when the signal-to-noise ratio is low, VideoQA-SC can improve the answer accuracy by 5.17% while saving almost 99.5% of the bandwidth at the same time, compared with the advanced DJSCC-based SC system. Our results show the great potential of task-oriented SC system design for video applications.


Octopus v4: Graph of language models

arXiv.org Artificial Intelligence

Language models have been effective in a wide range of applications, yet the most sophisticated models are often proprietary. For example, GPT-4 by OpenAI and various models by Anthropic are expensive and consume substantial energy. In contrast, the open-source community has produced competitive models, like Llama3. Furthermore, niche-specific smaller language models, such as those tailored for legal, medical or financial tasks, have outperformed their proprietary counterparts. This paper introduces a novel approach that employs \textit{functional tokens} to integrate \textbf{multiple open-source models}, each optimized for particular tasks. Our newly developed Octopus v4 model leverages \textit{functional tokens} to intelligently direct user queries to the most appropriate vertical model and reformat the query to achieve the best performance. Octopus v4, an evolution of the Octopus v1, v2, and v3 models, excels in selection and parameter understanding and reformatting. Additionally, we explore the use of graph as a versatile data structure that effectively coordinates multiple open-source models by harnessing the capabilities of the Octopus model and \textit{functional tokens}. Use our open-sourced GitHub (\url{https://www.nexa4ai.com/}) to try Octopus v4 models (\url{https://huggingface.co/NexaAIDev/Octopus-v4}), and contrite to a larger graph of language models. By activating models less than 10B parameters, we achieved SOTA MMLU score of 74.8 among the same level models.


Simultaneous Estimation of Shape and Force along Highly Deformable Surgical Manipulators Using Sparse FBG Measurement

arXiv.org Artificial Intelligence

Recently, fiber optic sensors such as fiber Bragg gratings (FBGs) have been widely investigated for shape reconstruction and force estimation of flexible surgical robots. However, most existing approaches need precise model parameters of FBGs inside the fiber and their alignments with the flexible robots for accurate sensing results. Another challenge lies in online acquiring external forces at arbitrary locations along the flexible robots, which is highly required when with large deflections in robotic surgery. In this paper, we propose a novel data-driven paradigm for simultaneous estimation of shape and force along highly deformable flexible robots by using sparse strain measurement from a single-core FBG fiber. A thin-walled soft sensing tube helically embedded with FBG sensors is designed for a robotic-assisted flexible ureteroscope with large deflection up to 270 degrees and a bend radius under 10 mm. We introduce and study three learning models by incorporating spatial strain encoders, and compare their performances in both free space and constrained environments with contact forces at different locations. The experimental results in terms of dynamic shape-force sensing accuracy demonstrate the effectiveness and superiority of the proposed methods.