Goto

Collaborating Authors

 Chen, Tianshui


Adaptive Global-Local Representation Learning and Selection for Cross-Domain Facial Expression Recognition

arXiv.org Artificial Intelligence

Domain shift poses a significant challenge in Cross-Domain Facial Expression Recognition (CD-FER) due to the distribution variation across different domains. Current works mainly focus on learning domain-invariant features through global feature adaptation, while neglecting the transferability of local features. Additionally, these methods lack discriminative supervision during training on target datasets, resulting in deteriorated feature representation in target domain. To address these limitations, we propose an Adaptive Global-Local Representation Learning and Selection (AGLRLS) framework. The framework incorporates global-local adversarial adaptation and semantic-aware pseudo label generation to enhance the learning of domain-invariant and discriminative feature during training. Meanwhile, a global-local prediction consistency learning is introduced to improve classification results during inference. Specifically, the framework consists of separate global-local adversarial learning modules that learn domain-invariant global and local features independently. We also design a semantic-aware pseudo label generation module, which computes semantic labels based on global and local features. Moreover, a novel dynamic threshold strategy is employed to learn the optimal thresholds by leveraging independent prediction of global and local features, ensuring filtering out the unreliable pseudo labels while retaining reliable ones. These labels are utilized for model optimization through the adversarial learning process in an end-to-end manner. During inference, a global-local prediction consistency module is developed to automatically learn an optimal result from multiple predictions. We conduct comprehensive experiments and analysis based on a fair evaluation benchmark. The results demonstrate that the proposed framework outperforms the current competing methods by a substantial margin.


MotionCtrl: A Unified and Flexible Motion Controller for Video Generation

arXiv.org Artificial Intelligence

Motions in a video primarily consist of camera motion, induced by camera movement, and object motion, resulting from object movement. Accurate control of both camera and object motion is essential for video generation. However, existing works either mainly focus on one type of motion or do not clearly distinguish between the two, limiting their control capabilities and diversity. Therefore, this paper presents MotionCtrl, a unified and flexible motion controller for video generation designed to effectively and independently control camera and object motion. The architecture and training strategy of MotionCtrl are carefully devised, taking into account the inherent properties of camera motion, object motion, and imperfect training data. Compared to previous methods, MotionCtrl offers three main advantages: 1) It effectively and independently controls camera motion and object motion, enabling more fine-grained motion control and facilitating flexible and diverse combinations of both types of motion. 2) Its motion conditions are determined by camera poses and trajectories, which are appearance-free and minimally impact the appearance or shape of objects in generated videos. 3) It is a relatively generalizable model that can adapt to a wide array of camera poses and trajectories once trained. Extensive qualitative and quantitative experiments have been conducted to demonstrate the superiority of MotionCtrl over existing methods.


Towards CausalGPT: A Multi-Agent Approach for Faithful Knowledge Reasoning via Promoting Causal Consistency in LLMs

arXiv.org Artificial Intelligence

Despite advancements in LLMs, knowledge-based reasoning remains a longstanding issue due to the fragility of knowledge recall and inference. Existing methods primarily encourage LLMs to autonomously plan and solve problems or to extensively sample reasoning chains without addressing the conceptual and inferential fallacies. Attempting to alleviate inferential fallacies and drawing inspiration from multi-agent collaboration, we present a framework to increase faithfulness and causality for knowledge-based reasoning. Specifically, we propose to employ multiple intelligent agents (i.e., reasoners and an evaluator) to work collaboratively in a reasoning-and-consensus paradigm for elevated reasoning faithfulness. The reasoners focus on providing solutions with human-like causality to solve open-domain problems. On the other hand, the \textit{evaluator} agent scrutinizes if a solution is deducible from a non-causal perspective and if it still holds when challenged by a counterfactual candidate. According to the extensive and comprehensive evaluations on a variety of knowledge reasoning tasks (e.g., science question answering and commonsense reasoning), our framework outperforms all compared state-of-the-art approaches by large margins.


Perception and Semantic Aware Regularization for Sequential Confidence Calibration

arXiv.org Artificial Intelligence

Deep sequence recognition (DSR) models receive increasing attention due to their superior application to various applications. Most DSR models use merely the target sequences as supervision without considering other related sequences, leading to over-confidence in their predictions. The DSR models trained with label smoothing regularize labels by equally and independently smoothing each token, reallocating a small value to other tokens for mitigating overconfidence. However, they do not consider tokens/sequences correlations that may provide more effective information to regularize training and thus lead to sub-optimal performance. In this work, we find tokens/sequences with high perception and semantic correlations with the target ones contain more correlated and effective information and thus facilitate more effective regularization. To this end, we propose a Perception and Semantic aware Sequence Regularization framework, which explore perceptively and semantically correlated tokens/sequences as regularization. Specifically, we introduce a semantic context-free recognition and a language model to acquire similar sequences with high perceptive similarities and semantic correlation, respectively. Moreover, over-confidence degree varies across samples according to their difficulties. Thus, we further design an adaptive calibration intensity module to compute a difficulty score for each samples to obtain finer-grained regularization. Extensive experiments on canonical sequence recognition tasks, including scene text and speech recognition, demonstrate that our method sets novel state-of-the-art results. Code is available at https://github.com/husterpzh/PSSR.


Exploring Negatives in Contrastive Learning for Unpaired Image-to-Image Translation

arXiv.org Artificial Intelligence

Unpaired image-to-image translation aims to find a mapping between the source domain and the target domain. To alleviate the problem of the lack of supervised labels for the source images, cycle-consistency based methods have been proposed for image structure preservation by assuming a reversible relationship between unpaired images. However, this assumption only uses limited correspondence between image pairs. Recently, contrastive learning (CL) has been used to further investigate the image correspondence in unpaired image translation by using patch-based positive/negative learning. Patch-based contrastive routines obtain the positives by self-similarity computation and recognize the rest patches as negatives. This flexible learning paradigm obtains auxiliary contextualized information at a low cost. As the negatives own an impressive sample number, with curiosity, we make an investigation based on a question: are all negatives necessary for feature contrastive learning? Unlike previous CL approaches that use negatives as much as possible, in this paper, we study the negatives from an information-theoretic perspective and introduce a new negative Pruning technology for Unpaired image-to-image Translation (PUT) by sparsifying and ranking the patches. The proposed algorithm is efficient, flexible and enables the model to learn essential information between corresponding patches stably. By putting quality over quantity, only a few negative patches are required to achieve better results. Lastly, we validate the superiority, stability, and versatility of our model through comparative experiments.


Aerial Images Meet Crowdsourced Trajectories: A New Approach to Robust Road Extraction

arXiv.org Artificial Intelligence

Land remote sensing analysis is a crucial research in earth science. In this work, we focus on a challenging task of land analysis, i.e., automatic extraction of traffic roads from remote sensing data, which has widespread applications in urban development and expansion estimation. Nevertheless, conventional methods either only utilized the limited information of aerial images, or simply fused multimodal information (e.g., vehicle trajectories), thus cannot well recognize unconstrained roads. To facilitate this problem, we introduce a novel neural network framework termed Cross-Modal Message Propagation Network (CMMPNet), which fully benefits the complementary different modal data (i.e., aerial images and crowdsourced trajectories). Specifically, CMMPNet is composed of two deep Auto-Encoders for modality-specific representation learning and a tailor-designed Dual Enhancement Module for cross-modal representation refinement. In particular, the complementary information of each modality is comprehensively extracted and dynamically propagated to enhance the representation of another modality. Extensive experiments on three real-world benchmarks demonstrate the effectiveness of our CMMPNet for robust road extraction benefiting from blending different modal data, either using image and trajectory data or image and Lidar data. From the experimental results, we observe that the proposed approach outperforms current state-of-the-art methods by large margins.Our source code is resealed on the project page \url{http://lingboliu.com/multimodal road extraction.html}


Recurrent Attentional Reinforcement Learning for Multi-Label Image Recognition

AAAI Conferences

Recognizing multiple labels of images is a fundamental but challenging task in computer vision, and remarkable progress has been attained by localizing semantic-aware image regions and predicting their labels with deep convolutional neural networks. The step of hypothesis regions (region proposals) localization in these existing multi-label image recognition pipelines, however, usually takes redundant computation cost, e.g., generating hundreds of meaningless proposals with non-discriminative information and extracting their features, and the spatial contextual dependency modeling among the localized regions are often ignored or over-simplified. To resolve these issues, this paper proposes a recurrent attention reinforcement learning framework to iteratively discover a sequence of attentional and informative regions that are related to different semantic objects and further predict label scores conditioned on these regions. Besides, our method explicitly models long-term dependencies among these attentional regions that help to capture semantic label co-occurrence and thus facilitate multi-label recognition. Extensive experiments and comparisons on two large-scale benchmarks (i.e., PASCAL VOC and MS-COCO) show that our model achieves superior performance over existing state-of-the-art methods in both performance and efficiency as well as explicitly identifying image-level semantic labels to specific object regions.


Learning a Wavelet-Like Auto-Encoder to Accelerate Deep Neural Networks

AAAI Conferences

Accelerating deep neural networks (DNNs) has been attracting increasing attention as it can benefit a wide range of applications, e.g., enabling mobile systems with limited computing resources to own powerful visual recognition ability. A practical strategy to this goal usually relies on a two-stage process: operating on the trained DNNs (e.g., approximating the convolutional filters with tensor decomposition) and fine-tuning the amended network, leading to difficulty in balancing the trade-off between acceleration and maintaining recognition performance. In this work, aiming at a general and comprehensive way for neural network acceleration, we develop a Wavelet-like Auto-Encoder (WAE) that decomposes the original input image into two low-resolution channels (sub-images) and incorporate the WAE into the classification neural networks for joint training. The two decomposed channels, in particular, are encoded to carry the low-frequency information (e.g., image profiles) and high-frequency (e.g., image details or noises), respectively, and enable reconstructing the original input image through the decoding process. Then, we feed the low-frequency channel into a standard classification network such as VGG or ResNet and employ a very lightweight network to fuse with the high-frequency channel to obtain the classification result. Compared to existing DNN acceleration solutions, our framework has the following advantages: i) it is tolerant to any existing convolutional neural networks for classification without amending their structures; ii) the WAE provides an interpretable way to preserve the main components of the input image for classification.