Goto

Collaborating Authors

 Chen, Tianle


Segment Anything Model (SAM) Enhanced Pseudo Labels for Weakly Supervised Semantic Segmentation

arXiv.org Artificial Intelligence

Weakly supervised semantic segmentation (WSSS) aims to bypass the need for laborious pixel-level annotation by using only image-level annotation. Most existing methods rely on Class Activation Maps (CAM) to derive pixel-level pseudo-labels and use them to train a fully supervised semantic segmentation model. Although these pseudo-labels are class-aware, indicating the coarse regions for particular classes, they are not object-aware and fail to delineate accurate object boundaries. To address this, we introduce a simple yet effective method harnessing the Segment Anything Model (SAM), a class-agnostic foundation model capable of producing fine-grained instance masks of objects, parts, and subparts. We use CAM pseudo-labels as cues to select and combine SAM masks, resulting in high-quality pseudo-labels that are both class-aware and object-aware. Our approach is highly versatile and can be easily integrated into existing WSSS methods without any modification. Despite its simplicity, our approach shows consistent gain over the state-of-the-art WSSS methods on both PASCAL VOC and MS-COCO datasets.


Pre-Training LiDAR-Based 3D Object Detectors Through Colorization

arXiv.org Artificial Intelligence

Accurate 3D object detection and understanding for self-driving cars heavily relies on LiDAR point clouds, necessitating large amounts of labeled data to train. In this work, we introduce an innovative pre-training approach, Grounded Point Colorization (GPC), to bridge the gap between data and labels by teaching the model to colorize LiDAR point clouds, equipping it with valuable semantic cues. To tackle challenges arising from color variations and selection bias, we incorporate color as "context" by providing ground-truth colors as hints during colorization. Even with limited labeled data, GPC significantly improves finetuning performance; notably, on just 20% of the KITTI dataset, GPC outperforms training from scratch with the entire dataset. In sum, we introduce a fresh perspective on pre-training for 3D object detection, aligning the objective with the model's intended role and ultimately advancing the accuracy and efficiency of 3D object detection for autonomous vehicles. Detecting objects such as vehicles and pedestrians in 3D is crucial for self-driving cars to operate safely. Mainstream 3D object detectors (Shi et al., 2019; 2020b; Zhu et al., 2020; He et al., 2020a) take LiDAR point clouds as input, which provide precise 3D signals of the surrounding environment. However, training a detector needs a lot of labeled data. The expensive process of curating annotated data has motivated the community to investigate model pre-training using unlabeled data that can be collected easily. Most of the existing pre-training methods are built upon contrastive learning (Yin et al., 2022; Xie et al., 2020; Zhang et al., 2021; Huang et al., 2021; Liang et al., 2021), inspired by its success in 2D recognition (Chen et al., 2020a; He et al., 2020b). The key novelties, however, are often limited to how the positive and negative data pairs are constructed. This paper attempts to go beyond contrastive learning by providing a new perspective on pre-training 3D object detectors. We rethink pre-training's role in how it could facilitate the downstream fine-tuning with labeled data.


OIAD: One-for-all Image Anomaly Detection with Disentanglement Learning

arXiv.org Machine Learning

Anomaly detection aims to recognize samples with anomalous and unusual patterns with respect to a set of normal data, which is significant for numerous domain applications, e.g. in industrial inspection, medical imaging, and security enforcement. There are two key research challenges associated with existing anomaly detention approaches: (1) many of them perform well on low-dimensional problems however the performance on high-dimensional instances is limited, such as images; (2) many of them depend on often still rely on traditional supervised approaches and manual engineering of features, while the topic has not been fully explored yet using modern deep learning approaches, even when the well-label samples are limited. In this paper, we propose a One-for-all Image Anomaly Detection system (OIAD) based on disentangled learning using only clean samples. Our key insight is that the impact of small perturbation on the latent representation can be bounded for normal samples while anomaly images are usually outside such bounded intervals, called structure consistency. We implement this idea and evaluate its performance for anomaly detention. Our experiments with three datasets show that OIAD can detect over $90\%$ of anomalies while maintaining a high low false alarm rate. It can also detect suspicious samples from samples labeled as clean, coincided with what humans would deem unusual.


Generating Semantic Adversarial Examples via Feature Manipulation

arXiv.org Machine Learning

The vulnerability of deep neural networks to adversarial attacks has been widely demonstrated (e.g., adversarial example attacks). Traditional attacks perform unstructured pixel-wise perturbation to fool the classifier. An alternative approach is to have perturbations in the latent space. However, such perturbations are hard to control due to the lack of interpretability and disentanglement. In this paper, we propose a more practical adversarial attack by designing structured perturbation with semantic meanings. Our proposed technique manipulates the semantic attributes of images via the disentangled latent codes. The intuition behind our technique is that images in similar domains have some commonly shared but theme-independent semantic attributes, e.g. thickness of lines in handwritten digits, that can be bidirectionally mapped to disentangled latent codes. We generate adversarial perturbation by manipulating a single or a combination of these latent codes and propose two unsupervised semantic manipulation approaches: vector-based disentangled representation and feature map-based disentangled representation, in terms of the complexity of the latent codes and smoothness of the reconstructed images. We conduct extensive experimental evaluations on real-world image data to demonstrate the power of our attacks for black-box classifiers. We further demonstrate the existence of a universal, image-agnostic semantic adversarial example.


Multivariate Arrival Times with Recurrent Neural Networks for Personalized Demand Forecasting

arXiv.org Machine Learning

Access to a large variety of data across a massive population has made it possible to predict customer purchase patterns and responses to marketing campaigns. In particular, accurate demand forecasts for popular products with frequent repeat purchases are essential since these products are one of the main drivers of profits. However, buyer purchase patterns are extremely diverse and sparse on a per-product level due to population heterogeneity as well as dependence in purchase patterns across product categories. Traditional methods in survival analysis have proven effective in dealing with censored data by assuming parametric distributions on inter-arrival times. Distributional parameters are then fitted, typically in a regression framework. On the other hand, neural-network based models take a non-parametric approach to learn relations from a larger functional class. However, the lack of distributional assumptions make it difficult to model partially observed data. In this paper, we model directly the inter-arrival times as well as the partially observed information at each time step in a survival-based approach using Recurrent Neural Networks (RNN) to model purchase times jointly over several products. Instead of predicting a point estimate for inter-arrival times, the RNN outputs parameters that define a distributional estimate. The loss function is the negative log-likelihood of these parameters given partially observed data. This approach allows one to leverage both fully observed data as well as partial information. By externalizing the censoring problem through a log-likelihood loss function, we show that substantial improvements over state-of-the-art machine learning methods can be achieved. We present experimental results based on two open datasets as well as a study on a real dataset from a large retailer.