Chen, Sully
GPT-4 Technical Report
OpenAI, null, :, null, Achiam, Josh, Adler, Steven, Agarwal, Sandhini, Ahmad, Lama, Akkaya, Ilge, Aleman, Florencia Leoni, Almeida, Diogo, Altenschmidt, Janko, Altman, Sam, Anadkat, Shyamal, Avila, Red, Babuschkin, Igor, Balaji, Suchir, Balcom, Valerie, Baltescu, Paul, Bao, Haiming, Bavarian, Mo, Belgum, Jeff, Bello, Irwan, Berdine, Jake, Bernadett-Shapiro, Gabriel, Berner, Christopher, Bogdonoff, Lenny, Boiko, Oleg, Boyd, Madelaine, Brakman, Anna-Luisa, Brockman, Greg, Brooks, Tim, Brundage, Miles, Button, Kevin, Cai, Trevor, Campbell, Rosie, Cann, Andrew, Carey, Brittany, Carlson, Chelsea, Carmichael, Rory, Chan, Brooke, Chang, Che, Chantzis, Fotis, Chen, Derek, Chen, Sully, Chen, Ruby, Chen, Jason, Chen, Mark, Chess, Ben, Cho, Chester, Chu, Casey, Chung, Hyung Won, Cummings, Dave, Currier, Jeremiah, Dai, Yunxing, Decareaux, Cory, Degry, Thomas, Deutsch, Noah, Deville, Damien, Dhar, Arka, Dohan, David, Dowling, Steve, Dunning, Sheila, Ecoffet, Adrien, Eleti, Atty, Eloundou, Tyna, Farhi, David, Fedus, Liam, Felix, Niko, Fishman, Simón Posada, Forte, Juston, Fulford, Isabella, Gao, Leo, Georges, Elie, Gibson, Christian, Goel, Vik, Gogineni, Tarun, Goh, Gabriel, Gontijo-Lopes, Rapha, Gordon, Jonathan, Grafstein, Morgan, Gray, Scott, Greene, Ryan, Gross, Joshua, Gu, Shixiang Shane, Guo, Yufei, Hallacy, Chris, Han, Jesse, Harris, Jeff, He, Yuchen, Heaton, Mike, Heidecke, Johannes, Hesse, Chris, Hickey, Alan, Hickey, Wade, Hoeschele, Peter, Houghton, Brandon, Hsu, Kenny, Hu, Shengli, Hu, Xin, Huizinga, Joost, Jain, Shantanu, Jain, Shawn, Jang, Joanne, Jiang, Angela, Jiang, Roger, Jin, Haozhun, Jin, Denny, Jomoto, Shino, Jonn, Billie, Jun, Heewoo, Kaftan, Tomer, Kaiser, Łukasz, Kamali, Ali, Kanitscheider, Ingmar, Keskar, Nitish Shirish, Khan, Tabarak, Kilpatrick, Logan, Kim, Jong Wook, Kim, Christina, Kim, Yongjik, Kirchner, Hendrik, Kiros, Jamie, Knight, Matt, Kokotajlo, Daniel, Kondraciuk, Łukasz, Kondrich, Andrew, Konstantinidis, Aris, Kosic, Kyle, Krueger, Gretchen, Kuo, Vishal, Lampe, Michael, Lan, Ikai, Lee, Teddy, Leike, Jan, Leung, Jade, Levy, Daniel, Li, Chak Ming, Lim, Rachel, Lin, Molly, Lin, Stephanie, Litwin, Mateusz, Lopez, Theresa, Lowe, Ryan, Lue, Patricia, Makanju, Anna, Malfacini, Kim, Manning, Sam, Markov, Todor, Markovski, Yaniv, Martin, Bianca, Mayer, Katie, Mayne, Andrew, McGrew, Bob, McKinney, Scott Mayer, McLeavey, Christine, McMillan, Paul, McNeil, Jake, Medina, David, Mehta, Aalok, Menick, Jacob, Metz, Luke, Mishchenko, Andrey, Mishkin, Pamela, Monaco, Vinnie, Morikawa, Evan, Mossing, Daniel, Mu, Tong, Murati, Mira, Murk, Oleg, Mély, David, Nair, Ashvin, Nakano, Reiichiro, Nayak, Rajeev, Neelakantan, Arvind, Ngo, Richard, Noh, Hyeonwoo, Ouyang, Long, O'Keefe, Cullen, Pachocki, Jakub, Paino, Alex, Palermo, Joe, Pantuliano, Ashley, Parascandolo, Giambattista, Parish, Joel, Parparita, Emy, Passos, Alex, Pavlov, Mikhail, Peng, Andrew, Perelman, Adam, Peres, Filipe de Avila Belbute, Petrov, Michael, Pinto, Henrique Ponde de Oliveira, Michael, null, Pokorny, null, Pokrass, Michelle, Pong, Vitchyr, Powell, Tolly, Power, Alethea, Power, Boris, Proehl, Elizabeth, Puri, Raul, Radford, Alec, Rae, Jack, Ramesh, Aditya, Raymond, Cameron, Real, Francis, Rimbach, Kendra, Ross, Carl, Rotsted, Bob, Roussez, Henri, Ryder, Nick, Saltarelli, Mario, Sanders, Ted, Santurkar, Shibani, Sastry, Girish, Schmidt, Heather, Schnurr, David, Schulman, John, Selsam, Daniel, Sheppard, Kyla, Sherbakov, Toki, Shieh, Jessica, Shoker, Sarah, Shyam, Pranav, Sidor, Szymon, Sigler, Eric, Simens, Maddie, Sitkin, Jordan, Slama, Katarina, Sohl, Ian, Sokolowsky, Benjamin, Song, Yang, Staudacher, Natalie, Such, Felipe Petroski, Summers, Natalie, Sutskever, Ilya, Tang, Jie, Tezak, Nikolas, Thompson, Madeleine, Tillet, Phil, Tootoonchian, Amin, Tseng, Elizabeth, Tuggle, Preston, Turley, Nick, Tworek, Jerry, Uribe, Juan Felipe Cerón, Vallone, Andrea, Vijayvergiya, Arun, Voss, Chelsea, Wainwright, Carroll, Wang, Justin Jay, Wang, Alvin, Wang, Ben, Ward, Jonathan, Wei, Jason, Weinmann, CJ, Welihinda, Akila, Welinder, Peter, Weng, Jiayi, Weng, Lilian, Wiethoff, Matt, Willner, Dave, Winter, Clemens, Wolrich, Samuel, Wong, Hannah, Workman, Lauren, Wu, Sherwin, Wu, Jeff, Wu, Michael, Xiao, Kai, Xu, Tao, Yoo, Sarah, Yu, Kevin, Yuan, Qiming, Zaremba, Wojciech, Zellers, Rowan, Zhang, Chong, Zhang, Marvin, Zhao, Shengjia, Zheng, Tianhao, Zhuang, Juntang, Zhuk, William, Zoph, Barret
We report the development of GPT-4, a large-scale, multimodal model which can accept image and text inputs and produce text outputs. While less capable than humans in many real-world scenarios, GPT-4 exhibits human-level performance on various professional and academic benchmarks, including passing a simulated bar exam with a score around the top 10% of test takers. GPT-4 is a Transformer-based model pre-trained to predict the next token in a document. The post-training alignment process results in improved performance on measures of factuality and adherence to desired behavior. A core component of this project was developing infrastructure and optimization methods that behave predictably across a wide range of scales. This allowed us to accurately predict some aspects of GPT-4's performance based on models trained with no more than 1/1,000th the compute of GPT-4.
The ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2023: Intracranial Meningioma
LaBella, Dominic, Adewole, Maruf, Alonso-Basanta, Michelle, Altes, Talissa, Anwar, Syed Muhammad, Baid, Ujjwal, Bergquist, Timothy, Bhalerao, Radhika, Chen, Sully, Chung, Verena, Conte, Gian-Marco, Dako, Farouk, Eddy, James, Ezhov, Ivan, Godfrey, Devon, Hilal, Fathi, Familiar, Ariana, Farahani, Keyvan, Iglesias, Juan Eugenio, Jiang, Zhifan, Johanson, Elaine, Kazerooni, Anahita Fathi, Kent, Collin, Kirkpatrick, John, Kofler, Florian, Van Leemput, Koen, Li, Hongwei Bran, Liu, Xinyang, Mahtabfar, Aria, McBurney-Lin, Shan, McLean, Ryan, Meier, Zeke, Moawad, Ahmed W, Mongan, John, Nedelec, Pierre, Pajot, Maxence, Piraud, Marie, Rashid, Arif, Reitman, Zachary, Shinohara, Russell Takeshi, Velichko, Yury, Wang, Chunhao, Warman, Pranav, Wiggins, Walter, Aboian, Mariam, Albrecht, Jake, Anazodo, Udunna, Bakas, Spyridon, Flanders, Adam, Janas, Anastasia, Khanna, Goldey, Linguraru, Marius George, Menze, Bjoern, Nada, Ayman, Rauschecker, Andreas M, Rudie, Jeff, Tahon, Nourel Hoda, Villanueva-Meyer, Javier, Wiestler, Benedikt, Calabrese, Evan
Meningiomas are the most common primary intracranial tumor in adults and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on multiparametric MRI (mpMRI) for diagnosis, treatment planning, and longitudinal treatment monitoring; yet automated, objective, and quantitative tools for non-invasive assessment of meningiomas on mpMRI are lacking. The BraTS meningioma 2023 challenge will provide a community standard and benchmark for state-of-the-art automated intracranial meningioma segmentation models based on the largest expert annotated multilabel meningioma mpMRI dataset to date. Challenge competitors will develop automated segmentation models to predict three distinct meningioma sub-regions on MRI including enhancing tumor, non-enhancing tumor core, and surrounding nonenhancing T2/FLAIR hyperintensity. Models will be evaluated on separate validation and held-out test datasets using standardized metrics utilized across the BraTS 2023 series of challenges including the Dice similarity coefficient and Hausdorff distance. The models developed during the course of this challenge will aid in incorporation of automated meningioma MRI segmentation into clinical practice, which will ultimately improve care of patients with meningioma.
Satellite Monitoring of Terrestrial Plastic Waste
Kruse, Caleb, Boyda, Edward, Chen, Sully, Karra, Krishna, Bou-Nahra, Tristan, Hammer, Dan, Mathis, Jennifer, Maddalene, Taylor, Jambeck, Jenna, Laurier, Fabien
Plastic waste is a significant environmental pollutant that is difficult to monitor. We created a system of neural networks to analyze spectral, spatial, and temporal components of Sentinel-2 satellite data to identify terrestrial aggregations of waste. The system works at continental scale. We evaluated performance in Indonesia and detected 374 waste aggregations, more than double the number of sites found in public databases. The same system deployed across twelve countries in Southeast Asia identifies 996 subsequently confirmed waste sites. For each detected site, we algorithmically monitor waste site footprints through time and cross-reference other datasets to generate physical and social metadata. 19% of detected waste sites are located within 200 m of a waterway. Numerous sites sit directly on riverbanks, with high risk of ocean leakage.