Chen, Samuel Yen-Chi
Toward Large-Scale Distributed Quantum Long Short-Term Memory with Modular Quantum Computers
Chen, Kuan-Cheng, Chen, Samuel Yen-Chi, Liu, Chen-Yu, Leung, Kin K.
In this work, we introduce a Distributed Quantum Long Short-Term Memory (QLSTM) framework that leverages modular quantum computing to address scalability challenges on Noisy Intermediate-Scale Quantum (NISQ) devices. By embedding variational quantum circuits into LSTM cells, the QLSTM captures long-range temporal dependencies, while a distributed architecture partitions the underlying Variational Quantum Circuits (VQCs) into smaller, manageable subcircuits that can be executed on a network of quantum processing units. We assess the proposed framework using nontrivial benchmark problems such as damped harmonic oscillators and Nonlinear Autoregressive Moving Average sequences. Our results demonstrate that the distributed QLSTM achieves stable convergence and improved training dynamics compared to classical approaches. This work underscores the potential of modular, distributed quantum computing architectures for large-scale sequence modelling, providing a foundation for the future integration of hybrid quantum-classical solutions into advanced Quantum High-performance computing (HPC) ecosystems.
Learning to Measure Quantum Neural Networks
Chen, Samuel Yen-Chi, Tseng, Huan-Hsin, Lin, Hsin-Yi, Yoo, Shinjae
The rapid progress in quantum computing (QC) and machine learning (ML) has attracted growing attention, prompting extensive research into quantum machine learning (QML) algorithms to solve diverse and complex problems. Designing high-performance QML models demands expert-level proficiency, which remains a significant obstacle to the broader adoption of QML. A few major hurdles include crafting effective data encoding techniques and parameterized quantum circuits, both of which are crucial to the performance of QML models. Additionally, the measurement phase is frequently overlooked-most current QML models rely on pre-defined measurement protocols that often fail to account for the specific problem being addressed. We introduce a novel approach that makes the observable of the quantum system-specifically, the Hermitian matrix-learnable. Our method features an end-to-end differentiable learning framework, where the parameterized observable is trained alongside the ordinary quantum circuit parameters simultaneously. Using numerical simulations, we show that the proposed method can identify observables for variational quantum circuits that lead to improved outcomes, such as higher classification accuracy, thereby boosting the overall performance of QML models.
Transfer Learning Analysis of Variational Quantum Circuits
Tseng, Huan-Hsin, Lin, Hsin-Yi, Chen, Samuel Yen-Chi, Yoo, Shinjae
This work analyzes transfer learning of the Variational Quantum Circuit (VQC). Our framework begins with a pretrained VQC configured in one domain and calculates the transition of 1-parameter unitary subgroups required for a new domain. A formalism is established to investigate the adaptability and capability of a VQC under the analysis of loss bounds. Our theory observes knowledge transfer in VQCs and provides a heuristic interpretation for the mechanism. An analytical fine-tuning method is derived to attain the optimal transition for adaptations of similar domains.
Evolutionary Optimization for Designing Variational Quantum Circuits with High Model Capacity
Chen, Samuel Yen-Chi
Recent advancements in quantum computing (QC) and machine learning (ML) have garnered significant attention, leading to substantial efforts toward the development of quantum machine learning (QML) algorithms to address a variety of complex challenges. The design of high-performance QML models, however, requires expert-level knowledge, posing a significant barrier to the widespread adoption of QML. Key challenges include the design of data encoding mechanisms and parameterized quantum circuits, both of which critically impact the generalization capabilities of QML models. We propose a novel method that encodes quantum circuit architecture information to enable the evolution of quantum circuit designs. In this approach, the fitness function is based on the effective dimension, allowing for the optimization of quantum circuits towards higher model capacity. Through numerical simulations, we demonstrate that the proposed method is capable of discovering variational quantum circuit architectures that offer improved learning capabilities, thereby enhancing the overall performance of QML models for complex tasks.
Quantum-Train-Based Distributed Multi-Agent Reinforcement Learning
Chen, Kuan-Cheng, Chen, Samuel Yen-Chi, Liu, Chen-Yu, Leung, Kin K.
In this paper, we introduce Quantum-Train-Based Distributed Multi-Agent Reinforcement Learning (Dist-QTRL), a novel approach to addressing the scalability challenges of traditional Reinforcement Learning (RL) by integrating quantum computing principles. Quantum-Train Reinforcement Learning (QTRL) leverages parameterized quantum circuits to efficiently generate neural network parameters, achieving a \(poly(\log(N))\) reduction in the dimensionality of trainable parameters while harnessing quantum entanglement for superior data representation. The framework is designed for distributed multi-agent environments, where multiple agents, modeled as Quantum Processing Units (QPUs), operate in parallel, enabling faster convergence and enhanced scalability. Additionally, the Dist-QTRL framework can be extended to high-performance computing (HPC) environments by utilizing distributed quantum training for parameter reduction in classical neural networks, followed by inference using classical CPUs or GPUs. This hybrid quantum-HPC approach allows for further optimization in real-world applications. In this paper, we provide a mathematical formulation of the Dist-QTRL framework and explore its convergence properties, supported by empirical results demonstrating performance improvements over centric QTRL models. The results highlight the potential of quantum-enhanced RL in tackling complex, high-dimensional tasks, particularly in distributed computing settings, where our framework achieves significant speedups through parallelization without compromising model accuracy. This work paves the way for scalable, quantum-enhanced RL systems in practical applications, leveraging both quantum and classical computational resources.
Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning
Qi, Jun, Yang, Chao-Han, Chen, Samuel Yen-Chi, Chen, Pin-Yu
Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning. It seeks to revolutionize machine learning by harnessing the unique capabilities of quantum mechanics and employs machine learning techniques to advance quantum computing research. This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits (VQC) are used to develop QML architectures on noisy intermediate-scale quantum (NISQ) devices. We discuss machine learning for the quantum computing paradigm, showcasing our recent theoretical and empirical findings. In particular, we delve into future directions for studying QML, exploring the potential industrial impacts of QML research.
Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits
Qi, Jun, Yang, Chao-Han, Chen, Samuel Yen-Chi, Chen, Pin-Yu, Zenil, Hector, Tegner, Jesper
Quantum Machine Learning (QML) offers tremendous potential but is currently limited by the availability of qubits. We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC). This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions, making QML more viable for real-world applications. Our method significantly improves parameter optimization for VQC while delivering notable gains in representation and generalization capabilities, as evidenced by rigorous theoretical analysis and extensive empirical testing on quantum dot classification tasks. Moreover, our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach. By addressing the constraints of current quantum hardware, our work paves the way for a new era of advanced QML applications, unlocking the full potential of quantum computing in fields such as machine learning, materials science, medicine, mimetics, and various interdisciplinary areas.
Quantum-Trained Convolutional Neural Network for Deepfake Audio Detection
Lin, Chu-Hsuan Abraham, Liu, Chen-Yu, Chen, Samuel Yen-Chi, Chen, Kuan-Cheng
The rise of deepfake technologies has posed significant challenges to privacy, security, and information integrity, particularly in audio and multimedia content. This paper introduces a Quantum-Trained Convolutional Neural Network (QT-CNN) framework designed to enhance the detection of deepfake audio, leveraging the computational power of quantum machine learning (QML). The QT-CNN employs a hybrid quantum-classical approach, integrating Quantum Neural Networks (QNNs) with classical neural architectures to optimize training efficiency while reducing the number of trainable parameters. Our method incorporates a novel quantum-to-classical parameter mapping that effectively utilizes quantum states to enhance the expressive power of the model, achieving up to 70% parameter reduction compared to classical models without compromising accuracy. Data pre-processing involved extracting essential audio features, label encoding, feature scaling, and constructing sequential datasets for robust model evaluation. Experimental results demonstrate that the QT-CNN achieves comparable performance to traditional CNNs, maintaining high accuracy during training and testing phases across varying configurations of QNN blocks. The QT framework's ability to reduce computational overhead while maintaining performance underscores its potential for real-world applications in deepfake detection and other resource-constrained scenarios. This work highlights the practical benefits of integrating quantum computing into artificial intelligence, offering a scalable and efficient approach to advancing deepfake detection technologies.
Differentiable Quantum Architecture Search in Asynchronous Quantum Reinforcement Learning
Chen, Samuel Yen-Chi
The emergence of quantum reinforcement learning (QRL) is propelled by advancements in quantum computing (QC) and machine learning (ML), particularly through quantum neural networks (QNN) built on variational quantum circuits (VQC). These advancements have proven successful in addressing sequential decision-making tasks. However, constructing effective QRL models demands significant expertise due to challenges in designing quantum circuit architectures, including data encoding and parameterized circuits, which profoundly influence model performance. In this paper, we propose addressing this challenge with differentiable quantum architecture search (DiffQAS), enabling trainable circuit parameters and structure weights using gradient-based optimization. Furthermore, we enhance training efficiency through asynchronous reinforcement learning (RL) methods facilitating parallel training. Through numerical simulations, we demonstrate that our proposed DiffQAS-QRL approach achieves performance comparable to manually-crafted circuit architectures across considered environments, showcasing stability across diverse scenarios. This methodology offers a pathway for designing QRL models without extensive quantum knowledge, ensuring robust performance and fostering broader application of QRL.
Diffusion-Inspired Quantum Noise Mitigation in Parameterized Quantum Circuits
Nguyen, Hoang-Quan, Nguyen, Xuan Bac, Chen, Samuel Yen-Chi, Churchill, Hugh, Borys, Nicholas, Khan, Samee U., Luu, Khoa
Parameterized Quantum Circuits (PQCs) have been acknowledged as a leading strategy to utilize near-term quantum advantages in multiple problems, including machine learning and combinatorial optimization. When applied to specific tasks, the parameters in the quantum circuits are trained to minimize the target function. Although there have been comprehensive studies to improve the performance of the PQCs on practical tasks, the errors caused by the quantum noise downgrade the performance when running on real quantum computers. In particular, when the quantum state is transformed through multiple quantum circuit layers, the effect of the quantum noise happens cumulatively and becomes closer to the maximally mixed state or complete noise. This paper studies the relationship between the quantum noise and the diffusion model. Then, we propose a novel diffusion-inspired learning approach to mitigate the quantum noise in the PQCs and reduce the error for specific tasks. Through our experiments, we illustrate the efficiency of the learning strategy and achieve state-of-the-art performance on classification tasks in the quantum noise scenarios.