Goto

Collaborating Authors

 Chen, Runjian


Temporal Overlapping Prediction: A Self-supervised Pre-training Method for LiDAR Moving Object Segmentation

arXiv.org Artificial Intelligence

Moving object segmentation (MOS) on LiDAR point clouds is crucial for autonomous systems like self-driving vehicles. Previous supervised approaches rely heavily on costly manual annotations, while LiDAR sequences naturally capture temporal motion cues that can be leveraged for self-supervised learning. In this paper, we propose \textbf{T}emporal \textbf{O}verlapping \textbf{P}rediction (\textbf{TOP}), a self-supervised pre-training method that alleviate the labeling burden for MOS. \textbf{TOP} explores the temporal overlapping points that commonly observed by current and adjacent scans, and learns spatiotemporal representations by predicting the occupancy states of temporal overlapping points. Moreover, we utilize current occupancy reconstruction as an auxiliary pre-training objective, which enhances the current structural awareness of the model. We conduct extensive experiments and observe that the conventional metric Intersection-over-Union (IoU) shows strong bias to objects with more scanned points, which might neglect small or distant objects. To compensate for this bias, we introduce an additional metric called $\text{mIoU}_{\text{obj}}$ to evaluate object-level performance. Experiments on nuScenes and SemanticKITTI show that \textbf{TOP} outperforms both supervised training-from-scratch baseline and other self-supervised pre-training baselines by up to 28.77\% relative improvement, demonstrating strong transferability across LiDAR setups and generalization to other tasks. Code and pre-trained models will be publicly available upon publication.


Position: Towards Implicit Prompt For Text-To-Image Models

arXiv.org Artificial Intelligence

Recent text-to-image (T2I) models have had great success, and many benchmarks have been proposed to evaluate their performance and safety. However, they only consider explicit prompts while neglecting implicit prompts (hint at a target without explicitly mentioning it). These prompts may get rid of safety constraints and pose potential threats to the applications of these models. This position paper highlights the current state of T2I models toward implicit prompts. We present a benchmark named ImplicitBench and conduct an investigation on the performance and impacts of implicit prompts with popular T2I models. Specifically, we design and collect more than 2,000 implicit prompts of three aspects: General Symbols, Celebrity Privacy, and Not-Safe-For-Work (NSFW) Issues, and evaluate six well-known T2I models' capabilities under these implicit prompts. Experiment results show that (1) T2I models are able to accurately create various target symbols indicated by implicit prompts; (2) Implicit prompts bring potential risks of privacy leakage for T2I models. (3) Constraints of NSFW in most of the evaluated T2I models can be bypassed with implicit prompts. We call for increased attention to the potential and risks of implicit prompts in the T2I community and further investigation into the capabilities and impacts of implicit prompts, advocating for a balanced approach that harnesses their benefits while mitigating their risks.


RoboCodeX: Multimodal Code Generation for Robotic Behavior Synthesis

arXiv.org Artificial Intelligence

Robotic behavior synthesis, the problem of understanding multimodal inputs and generating precise physical control for robots, is an important part of Embodied AI. Despite successes in applying multimodal large language models for high-level understanding, it remains challenging to translate these conceptual understandings into detailed robotic actions while achieving generalization across various scenarios. In this paper, we propose a tree-structured multimodal code generation framework for generalized robotic behavior synthesis, termed RoboCodeX. RoboCodeX decomposes high-level human instructions into multiple object-centric manipulation units consisting of physical preferences such as affordance and safety constraints, and applies code generation to introduce generalization ability across various robotics platforms. To further enhance the capability to map conceptual and perceptual understanding into control commands, a specialized multimodal reasoning dataset is collected for pre-training and an iterative self-updating methodology is introduced for supervised fine-tuning. Extensive experiments demonstrate that RoboCodeX achieves state-of-the-art performance in both simulators and real robots on four different kinds of manipulation tasks and one navigation task.


CurriculumLoc: Enhancing Cross-Domain Geolocalization through Multi-Stage Refinement

arXiv.org Artificial Intelligence

Visual geolocalization is a cost-effective and scalable task that involves matching one or more query images, taken at some unknown location, to a set of geo-tagged reference images. Existing methods, devoted to semantic features representation, evolving towards robustness to a wide variety between query and reference, including illumination and viewpoint changes, as well as scale and seasonal variations. However, practical visual geolocalization approaches need to be robust in appearance changing and extreme viewpoint variation conditions, while providing accurate global location estimates. Therefore, inspired by curriculum design, human learn general knowledge first and then delve into professional expertise. We first recognize semantic scene and then measure geometric structure. Our approach, termed CurriculumLoc, involves a delicate design of multi-stage refinement pipeline and a novel keypoint detection and description with global semantic awareness and local geometric verification. We rerank candidates and solve a particular cross-domain perspective-n-point (PnP) problem based on these keypoints and corresponding descriptors, position refinement occurs incrementally. The extensive experimental results on our collected dataset, TerraTrack and a benchmark dataset, ALTO, demonstrate that our approach results in the aforementioned desirable characteristics of a practical visual geolocalization solution. Additionally, we achieve new high recall@1 scores of 62.6% and 94.5% on ALTO, with two different distances metrics, respectively. Dataset, code and trained models are publicly available on https://github.com/npupilab/CurriculumLoc.


Failure-aware Policy Learning for Self-assessable Robotics Tasks

arXiv.org Artificial Intelligence

Self-assessment rules play an essential role in safe and effective real-world robotic applications, which verify the feasibility of the selected action before actual execution. But how to utilize the self-assessment results to re-choose actions remains a challenge. Previous methods eliminate the selected action evaluated as failed by the self-assessment rules, and re-choose one with the next-highest affordance~(i.e. process-of-elimination strategy [1]), which ignores the dependency between the self-assessment results and the remaining untried actions. However, this dependency is important since the previous failures might help trim the remaining over-estimated actions. In this paper, we set to investigate this dependency by learning a failure-aware policy. We propose two architectures for the failure-aware policy by representing the self-assessment results of previous failures as the variable state, and leveraging recurrent neural networks to implicitly memorize the previous failures. Experiments conducted on three tasks demonstrate that our method can achieve better performances with higher task success rates by less trials. Moreover, when the actions are correlated, learning a failure-aware policy can achieve better performance than the process-of-elimination strategy.


Hierarchical Large-scale Graph Similarity Computation via Graph Coarsening and Matching

arXiv.org Machine Learning

In this work, we focus on large graph similarity computation problem and propose a novel "embedding-coarsening-matching" learning framework, which outperforms state-of-the-art methods in this task and has significant improvement in time efficiency. Graph similarity computation for metrics such as Graph Edit Distance (GED) is typically NP-hard, and existing heuristics-based algorithms usually achieves a unsatisfactory trade-off between accuracy and efficiency. Recently the development of deep learning techniques provides a promising solution for this problem by a data-driven approach which trains a network to encode graphs to their own feature vectors and computes similarity based on feature vectors. These deep-learning methods can be classified to two categories, embedding models and matching models. Embedding models such as GCN-Mean and GCN-Max, which directly map graphs to respective feature vectors, run faster but the performance is usually poor due to the lack of interactions across graphs. Matching models such as GMN, whose encoding process involves interaction across the two graphs, are more accurate but interaction between whole graphs brings a significant increase in time consumption (at least quadratic time complexity over number of nodes). Inspired by large biological molecular identification where the whole molecular is first mapped to functional groups and then identified based on these functional groups, our "embedding-coarsening-matching" learning framework first embeds and coarsens large graphs to coarsened graphs with denser local topology and then matching mechanism is deployed on the coarsened graphs for the final similarity scores. Detailed experiments have been conducted and the results demonstrate the efficiency and effectiveness of our proposed framework.


Graph Partitioning and Graph Neural Network based Hierarchical Graph Matching for Graph Similarity Computation

arXiv.org Machine Learning

Graph similarity computation, which predicts a similarity score between one pair of graphs, has been widely used in various fields, such as recommendation system Wu, Xiao and Chen (2015); Hu, Xu, Wang, Li and Liu (2020), computer vision Horaud and Skordas (1989); Pelillo, Siddiqi and Zucker (1999) and so on. However, most of the common distance measures evaluating how similar two graphs are, like Graph Edit Distance (GED) Bunke (1983) and Maximum Common Subgraph (MCS) Bunke and Shearer (1998), still suffer from large search spaces or excessive memory requirements. They are weak to compute exact graph distance for graphs with more than 16 nodes Blumenthal and Gamper (2018). Traditional graph similarity computation methods such as A* Riesen, Emmenegger and Bunke (2013), Hungarian Kuhn (1955); Riesen and Bunke (2009), VJ Fankhauser, Riesen and Bunke (2011); Jonker and Volgenant (1987), and BeamNeuhaus, Riesen and Bunke (2006), try to use pruning strategy or find approximate values instead of exact similarity to alleviate the problem. Nevertheless, by performing directly from the edges and nodes characteristics of the graphs, these exact and approximate algorithms still have a high time-complexity for computing the GED or MCS between two graphs, and are hard to be generalized to large graphs in real applications. With the rapid development of deep learning technology, graph embedding that automatically extracts the structural characteristics of the graph, provides a new solution for similarity computation and matching of graph structures. Recently, researchers proposed some representative graph deep learning models based on graph embedding for graph similarity computation.