Goto

Collaborating Authors

 Chen, Qiong


Uncertainty Aware Human-machine Collaboration in Camouflaged Object Detection

arXiv.org Artificial Intelligence

Camouflaged Object Detection (COD), the task of identifying objects concealed within their environments, has seen rapid growth due to its wide range of practical applications. A key step toward developing trustworthy COD systems is the estimation and effective utilization of uncertainty. In this work, we propose a human-machine collaboration framework for classifying the presence of camouflaged objects, leveraging the complementary strengths of computer vision (CV) models and noninvasive brain-computer interfaces (BCIs). Our approach introduces a multiview backbone to estimate uncertainty in CV model predictions, utilizes this uncertainty during training to improve efficiency, and defers low-confidence cases to human evaluation via RSVP-based BCIs during testing for more reliable decision-making. We evaluated the framework in the CAMO dataset, achieving state-of-the-art results with an average improvement of 4.56\% in balanced accuracy (BA) and 3.66\% in the F1 score compared to existing methods. For the best-performing participants, the improvements reached 7.6\% in BA and 6.66\% in the F1 score. Analysis of the training process revealed a strong correlation between our confidence measures and precision, while an ablation study confirmed the effectiveness of the proposed training policy and the human-machine collaboration strategy. In general, this work reduces human cognitive load, improves system reliability, and provides a strong foundation for advancements in real-world COD applications and human-computer interaction. Our code and data are available at: https://github.com/ziyuey/Uncertainty-aware-human-machine-collaboration-in-camouflaged-object-identification.


CSSSTN: A Class-sensitive Subject-to-subject Semantic Style Transfer Network for EEG Classification in RSVP Tasks

arXiv.org Artificial Intelligence

The Rapid Serial Visual Presentation (RSVP) paradigm represents a promising application of electroencephalography (EEG) in Brain-Computer Interface (BCI) systems. However, cross-subject variability remains a critical challenge, particularly for BCI-illiterate users who struggle to effectively interact with these systems. To address this issue, we propose the Class-Sensitive Subject-to-Subject Semantic Style Transfer Network (CSSSTN), which incorporates a class-sensitive approach to align feature distributions between golden subjects (BCI experts) and target (BCI-illiterate) users on a class-by-class basis. Building on the SSSTN framework, CSSSTN incorporates three key components: (1) subject-specific classifier training, (2) a unique style loss to transfer class-discriminative features while preserving semantic information through a modified content loss, and (3) an ensemble approach to integrate predictions from both source and target domains. We evaluated CSSSTN using both a publicly available dataset and a self-collected dataset. Experimental results demonstrate that CSSSTN outperforms state-of-the-art methods, achieving mean balanced accuracy improvements of 6.4\% on the Tsinghua dataset and 3.5\% on the HDU dataset, with notable benefits for BCI-illiterate users. Ablation studies confirm the effectiveness of each component, particularly the class-sensitive transfer and the use of lower-layer features, which enhance transfer performance and mitigate negative transfer. Additionally, CSSSTN achieves competitive results with minimal target data, reducing calibration time and effort. These findings highlight the practical potential of CSSSTN for real-world BCI applications, offering a robust and scalable solution to improve the performance of BCI-illiterate users while minimizing reliance on extensive training data. Our code is available at https://github.com/ziyuey/CSSSTN.


On-edge Multi-task Transfer Learning: Model and Practice with Data-driven Task Allocation

arXiv.org Artificial Intelligence

On edge devices, data scarcity occurs as a common problem where transfer learning serves as a widely-suggested remedy. Nevertheless, transfer learning imposes a heavy computation burden to resource-constrained edge devices. Existing task allocation works usually assume all submitted tasks are equally important, leading to inefficient resource allocation at a task level when directly applied in Multi-task Transfer Learning (MTL). To address these issues, we first reveal that it is crucial to measure the impact of tasks on overall decision performance improvement and quantify \emph{task importance}. We then show that task allocation with task importance for MTL (TATIM) is a variant of the NP-complete Knapsack problem, where the complicated computation to solve this problem needs to be conducted repeatedly under varying contexts. To solve TATIM with high computational efficiency, we propose a Data-driven Cooperative Task Allocation (DCTA) approach. Finally, we evaluate the performance of DCTA by not only a trace-driven simulation, but also a new comprehensive real-world AIOps case study that bridges model and practice via a new architecture and main components design within the AIOps system. Extensive experiments show that our DCTA reduces 3.24 times of processing time, and saves 48.4\% energy consumption compared with the state-of-the-art when solving TATIM.


Deep Reinforcement Learning for Imbalanced Classification

arXiv.org Machine Learning

Abstract--Data in real-world application often exhibit skewed class distribution which poses an intense challenge for machine learning. Conventional classification algorithms are not effective in the case of imbalanced data distribution, and may fail when the data distribution is highly imbalanced. To address this issue, we propose a general imbalanced classification model based on deep reinforcement learning. We formulate the classification problem as a sequential decision-making process and solve it by deep Q-learning network. The agent performs a classification action on one sample at each time step, and the environment evaluates the classification action and returns a reward to the agent. The reward from minority class sample is larger so the agent is more sensitive to the minority class. The agent finally finds an optimal classification policy in imbalanced data under the guidance of specific reward function and beneficial learning environment. Experiments show that our proposed model outperforms the other imbalanced classification algorithms, and it can identify more minority samples and has great classification performance.