Goto

Collaborating Authors

 Chen, Qiming


S3E: A Large-scale Multimodal Dataset for Collaborative SLAM

arXiv.org Artificial Intelligence

With the advanced request to employ a team of robots to perform a task collaboratively, the research community has become increasingly interested in collaborative simultaneous localization and mapping. Unfortunately, existing datasets are limited in the scale and variation of the collaborative trajectories, even though generalization between inter-trajectories among different agents is crucial to the overall viability of collaborative tasks. To help align the research community's contributions with realistic multiagent ordinated SLAM problems, we propose S3E, a large-scale multimodal dataset captured by a fleet of unmanned ground vehicles along four designed collaborative trajectory paradigms. S3E consists of 7 outdoor and 5 indoor sequences that each exceed 200 seconds, consisting of well temporal synchronized and spatial calibrated high-frequency IMU, high-quality stereo camera, and 360 degree LiDAR data. Crucially, our effort exceeds previous attempts regarding dataset size, scene variability, and complexity. It has 4x as much average recording time as the pioneering EuRoC dataset. We also provide careful dataset analysis as well as baselines for collaborative SLAM and single counterparts. Data and more up-to-date details are found at https://github.com/PengYu-Team/S3E.


Machine Translation with Real-Time Web Search

AAAI Conferences

Contemporary machine translation systems usually rely on offline data retrieved from the web for individual model training, such as translation models and language models. In contrast to existing methods, we propose a novel approach that treats machine translation as a web search task and utilizes the web on the fly to acquire translation knowledge. This end-to-end approach takes advantage of fresh web search results that are capable of leveraging tremendous web knowledge to obtain phrase-level candidates on demand and then compose sentence-level translations. Experimental results show that our web-based machine translation method demonstrates very promising performance in leveraging fresh translation knowledge and making translation decisions. Furthermore, when combined with offline models, it significantly outperforms a state-of-the-art phrase-based statistical machine translation system.