Chen, Ping-Yang
The 8th AI City Challenge
Wang, Shuo, Anastasiu, David C., Tang, Zheng, Chang, Ming-Ching, Yao, Yue, Zheng, Liang, Rahman, Mohammed Shaiqur, Arya, Meenakshi S., Sharma, Anuj, Chakraborty, Pranamesh, Prajapati, Sanjita, Kong, Quan, Kobori, Norimasa, Gochoo, Munkhjargal, Otgonbold, Munkh-Erdene, Alnajjar, Fady, Batnasan, Ganzorig, Chen, Ping-Yang, Hsieh, Jun-Wei, Wu, Xunlei, Pusegaonkar, Sameer Satish, Wang, Yizhou, Biswas, Sujit, Chellappa, Rama
The eighth AI City Challenge highlighted the convergence of computer vision and artificial intelligence in areas like retail, warehouse settings, and Intelligent Traffic Systems (ITS), presenting significant research opportunities. The 2024 edition featured five tracks, attracting unprecedented interest from 726 teams in 47 countries and regions. Track 1 dealt with multi-target multi-camera (MTMC) people tracking, highlighting significant enhancements in camera count, character number, 3D annotation, and camera matrices, alongside new rules for 3D tracking and online tracking algorithm encouragement. Track 2 introduced dense video captioning for traffic safety, focusing on pedestrian accidents using multi-camera feeds to improve insights for insurance and prevention. Track 3 required teams to classify driver actions in a naturalistic driving analysis. Track 4 explored fish-eye camera analytics using the FishEye8K dataset. Track 5 focused on motorcycle helmet rule violation detection. The challenge utilized two leaderboards to showcase methods, with participants setting new benchmarks, some surpassing existing state-of-the-art achievements.
SARAS-Net: Scale and Relation Aware Siamese Network for Change Detection
Chen, Chao-Peng, Hsieh, Jun-Wei, Chen, Ping-Yang, Hsieh, Yi-Kuan, Wang, Bor-Shiun
Change detection (CD) aims to find the difference between two images at different times and outputs a change map to represent whether the region has changed or not. To achieve a better result in generating the change map, many State-of-The-Art (SoTA) methods design a deep learning model that has a powerful discriminative ability. However, these methods still get lower performance because they ignore spatial information and scaling changes between objects, giving rise to blurry or wrong boundaries. In addition to these, they also neglect the interactive information of two different images. To alleviate these problems, we propose our network, the Scale and Relation-Aware Siamese Network (SARAS-Net) to deal with this issue. In this paper, three modules are proposed that include relation-aware, scale-aware, and cross-transformer to tackle the problem of scene change detection more effectively. To verify our model, we tested three public datasets, including LEVIR-CD, WHU-CD, and DSFIN, and obtained SoTA accuracy. Our code is available at https://github.com/f64051041/SARAS-Net.
MS-DARTS: Mean-Shift Based Differentiable Architecture Search
Hsieh, Jun-Wei, Chang, Ming-Ching, Chen, Ping-Yang, Chou, Cheng-Han, Huang, Chih-Sheng
Differentiable Architecture Search (DARTS) is an effective continuous relaxation-based network architecture search (NAS) method with low search cost. It has attracted significant attentions in Auto-ML research and becomes one of the most useful paradigms in NAS. Although DARTS can produce superior efficiency over traditional NAS approaches with better control of complex parameters, oftentimes it suffers from stabilization issues in producing deteriorating architectures when discretizing the continuous architecture. We observed considerable loss of validity causing dramatic decline in performance at this final discretization step of DARTS. To address this issue, we propose a Mean-Shift based DARTS (MS-DARTS) to improve stability based on sampling and perturbation. Our approach can improve bot the stability and accuracy of DARTS, by smoothing the loss landscape and sampling architecture parameters within a suitable bandwidth. We investigate the convergence of our mean-shift approach, together with the effects of bandwidth selection that affects stability and accuracy. Evaluations performed on CIFAR-10, CIFAR-100, and ImageNet show that MS-DARTS archives higher performance over other state-of-the-art NAS methods with reduced search cost.
Multiple-Instance Logistic Regression with LASSO Penalty
Chen, Ray-Bing, Cheng, Kuang-Hung, Chang, Sheng-Mao, Jeng, Shuen-Lin, Chen, Ping-Yang, Yang, Chun-Hao, Hsia, Chi-Chun
In this work, we consider a manufactory process which can be described by a multiple-instance logistic regression model. In order to compute the maximum likelihood estimation of the unknown coefficient, an expectation-maximization algorithm is proposed, and the proposed modeling approach can be extended to identify the important covariates by adding the coefficient penalty term into the likelihood function. In addition to essential technical details, we demonstrate the usefulness of the proposed method by simulations and real examples.