Goto

Collaborating Authors

 Chen, Pin Yu


Locally Differentially Private Document Generation Using Zero Shot Prompting

arXiv.org Artificial Intelligence

Numerous studies have highlighted the privacy risks associated with pretrained large language models. In contrast, our research offers a unique perspective by demonstrating that pretrained large language models can effectively contribute to privacy preservation. We propose a locally differentially private mechanism called DP-Prompt, which leverages the power of pretrained large language models and zero-shot prompting to counter author de-anonymization attacks while minimizing the impact on downstream utility. When DP-Prompt is used with a powerful language model like ChatGPT (gpt-3.5), we observe a notable reduction in the success rate of de-anonymization attacks, showing that it surpasses existing approaches by a considerable margin despite its simpler design. For instance, in the case of the IMDB dataset, DP-Prompt (with ChatGPT) perfectly recovers the clean sentiment F1 score while achieving a 46\% reduction in author identification F1 score against static attackers and a 26\% reduction against adaptive attackers. We conduct extensive experiments across six open-source large language models, ranging up to 7 billion parameters, to analyze various effects of the privacy-utility tradeoff.


Uncovering the Hidden Cost of Model Compression

arXiv.org Artificial Intelligence

In the era of resource-intensive foundation models, efficient adaptation in downstream tasks has become paramount. Visual Prompting (VP), inspired by prompting in Large Language Models (LLMs), has emerged as a key transfer learning method in computer vision. Aligned with the growing significance of efficiency, research in model compression has become pivotal to alleviate the computational burden in both training and deploying over-parameterized neural networks. A key goal in model compression is the development of sparse models capable of matching or surpassing the performance of their over-parameterized, dense counterparts. While prior research has explored the impact of model sparsity on transfer learning, its effects on visual prompting-based transfer remain unclear. This study addresses this gap, revealing that model sparsity adversely affects the performance of visual prompting-based transfer, particularly in low-data-volume scenarios. Furthermore, our findings highlight the negative influence of sparsity on the calibration of downstream visual-prompted models. This empirical exploration calls for a nuanced understanding beyond accuracy in sparse settings, opening avenues for further research in Visual Prompting for sparse models. Code and logs can be accessed at https://github.com/landskape-ai/Reprogram_LT .