Chen, Pengan
TreeSynth: Synthesizing Diverse Data from Scratch via Tree-Guided Subspace Partitioning
Wang, Sheng, Chen, Pengan, Zhou, Jingqi, Li, Qintong, Dong, Jingwei, Gao, Jiahui, Xue, Boyang, Jiang, Jiyue, Kong, Lingpeng, Wu, Chuan
Model customization requires high-quality and diverse datasets, but acquiring such data remains challenging and costly. Although large language models (LLMs) can synthesize training data, current approaches are constrained by limited seed data, model bias and insufficient control over the generation process, resulting in limited diversity and biased distribution with the increase of data scales. To tackle this challenge, we present TreeSynth, a tree-guided subspace-based data synthesis framework that recursively partitions the entire data space into hierar-chical subspaces, enabling comprehensive and diverse scaling of data synthesis. Briefly, given a task-specific description, we construct a data space partitioning tree by iteratively executing criteria determination and subspace coverage steps. This hierarchically divides the whole space (i.e., root node) into mutually exclusive and complementary atomic subspaces (i.e., leaf nodes). By collecting synthesized data according to the attributes of each leaf node, we obtain a diverse dataset that fully covers the data space. Empirically, our extensive experiments demonstrate that TreeSynth surpasses both human-designed datasets and the state-of-the-art data synthesis baselines, achieving maximum improvements of 45.2% in data diversity and 17.6% in downstream task performance across various models and tasks. Hopefully, TreeSynth provides a scalable solution to synthesize diverse and comprehensive datasets from scratch without human intervention.
OpenFly: A Versatile Toolchain and Large-scale Benchmark for Aerial Vision-Language Navigation
Gao, Yunpeng, Li, Chenhui, You, Zhongrui, Liu, Junli, Li, Zhen, Chen, Pengan, Chen, Qizhi, Tang, Zhonghan, Wang, Liansheng, Yang, Penghui, Tang, Yiwen, Tang, Yuhang, Liang, Shuai, Zhu, Songyi, Xiong, Ziqin, Su, Yifei, Ye, Xinyi, Li, Jianan, Ding, Yan, Wang, Dong, Wang, Zhigang, Zhao, Bin, Li, Xuelong
Vision-Language Navigation (VLN) aims to guide agents through an environment by leveraging both language instructions and visual cues, playing a pivotal role in embodied AI. Indoor VLN has been extensively studied, whereas outdoor aerial VLN remains underexplored. The potential reason is that outdoor aerial view encompasses vast areas, making data collection more challenging, which results in a lack of benchmarks. To address this problem, we propose OpenFly, a platform comprising a versatile toolchain and large-scale benchmark for aerial VLN. Firstly, we develop a highly automated toolchain for data collection, enabling automatic point cloud acquisition, scene semantic segmentation, flight trajectory creation, and instruction generation. Secondly, based on the toolchain, we construct a large-scale aerial VLN dataset with 100k trajectories, covering diverse heights and lengths across 18 scenes. The corresponding visual data are generated using various rendering engines and advanced techniques, including Unreal Engine, GTA V, Google Earth, and 3D Gaussian Splatting (3D GS). All data exhibit high visual quality. Particularly, 3D GS supports real-to-sim rendering, further enhancing the realism of the dataset. Thirdly, we propose OpenFly-Agent, a keyframe-aware VLN model, which takes language instructions, current observations, and historical keyframes as input, and outputs flight actions directly. Extensive analyses and experiments are conducted, showcasing the superiority of our OpenFly platform and OpenFly-Agent. The toolchain, dataset, and codes will be open-sourced.
Large Language Models in Bioinformatics: A Survey
Wang, Zhenyu, Wang, Zikang, Jiang, Jiyue, Chen, Pengan, Shi, Xiangyu, Li, Yu
Large Language Models (LLMs) are revolutionizing bioinformatics, enabling advanced analysis of DNA, RNA, proteins, and single-cell data. This survey provides a systematic review of recent advancements, focusing on genomic sequence modeling, RNA structure prediction, protein function inference, and single-cell transcriptomics. Meanwhile, we also discuss several key challenges, including data scarcity, computational complexity, and cross-omics integration, and explore future directions such as multimodal learning, hybrid AI models, and clinical applications. By offering a comprehensive perspective, this paper underscores the transformative potential of LLMs in driving innovations in bioinformatics and precision medicine.
Benchmarking Large Language Models on Multiple Tasks in Bioinformatics NLP with Prompting
Jiang, Jiyue, Chen, Pengan, Wang, Jiuming, He, Dongchen, Wei, Ziqin, Hong, Liang, Zong, Licheng, Wang, Sheng, Yu, Qinze, Ma, Zixian, Chen, Yanyu, Fan, Yimin, Shi, Xiangyu, Sun, Jiawei, Wu, Chuan, Li, Yu
Large language models (LLMs) have become important tools in solving biological problems, offering improvements in accuracy and adaptability over conventional methods. Several benchmarks have been proposed to evaluate the performance of these LLMs. However, current benchmarks can hardly evaluate the performance of these models across diverse tasks effectively. In this paper, we introduce a comprehensive prompting-based benchmarking framework, termed Bio-benchmark, which includes 30 key bioinformatics tasks covering areas such as proteins, RNA, drugs, electronic health records, and traditional Chinese medicine. Using this benchmark, we evaluate six mainstream LLMs, including GPT-4o and Llama-3.1-70b, etc., using 0-shot and few-shot Chain-of-Thought (CoT) settings without fine-tuning to reveal their intrinsic capabilities. To improve the efficiency of our evaluations, we demonstrate BioFinder, a new tool for extracting answers from LLM responses, which increases extraction accuracy by round 30% compared to existing methods. Our benchmark results show the biological tasks suitable for current LLMs and identify specific areas requiring enhancement. Furthermore, we propose targeted prompt engineering strategies for optimizing LLM performance in these contexts. Based on these findings, we provide recommendations for the development of more robust LLMs tailored for various biological applications. This work offers a comprehensive evaluation framework and robust tools to support the application of LLMs in bioinformatics.
Developing and Utilizing a Large-Scale Cantonese Dataset for Multi-Tasking in Large Language Models
Jiang, Jiyue, Truong, Alfred Kar Yin, Chen, Yanyu, Bao, Qinghang, Wang, Sheng, Chen, Pengan, Wang, Jiuming, Kong, Lingpeng, Li, Yu, Wu, Chuan
High-quality data resources play a crucial role in learning large language models (LLMs), particularly for low-resource languages like Cantonese. Despite having more than 85 million native speakers, Cantonese is still considered a low-resource language in the field of natural language processing (NLP) due to factors such as the dominance of Mandarin, lack of cohesion within the Cantonese-speaking community, diversity in character encoding and input methods, and the tendency of overseas Cantonese speakers to prefer using English. In addition, rich colloquial vocabulary of Cantonese, English loanwords, and code-switching characteristics add to the complexity of corpus collection and processing. To address these challenges, we collect Cantonese texts from a variety of sources, including open source corpora, Hong Kong-specific forums, Wikipedia, and Common Crawl data. We conduct rigorous data processing through language filtering, quality filtering, content filtering, and de-duplication steps, successfully constructing a high-quality Cantonese corpus of over 2 billion tokens for training large language models. We further refined the model through supervised fine-tuning (SFT) on curated Cantonese tasks, enhancing its ability to handle specific applications. Upon completion of the training, the model achieves state-of-the-art (SOTA) performance on four Cantonese benchmarks. After training on our dataset, the model also exhibits improved performance on other mainstream language tasks.
MoS: Unleashing Parameter Efficiency of Low-Rank Adaptation with Mixture of Shards
Wang, Sheng, Chen, Liheng, Chen, Pengan, Dong, Jingwei, Xue, Boyang, Jiang, Jiyue, Kong, Lingpeng, Wu, Chuan
The rapid scaling of large language models necessitates more lightweight finetuning methods to reduce the explosive GPU memory overhead when numerous customized models are served simultaneously. Targeting more parameter-efficient low-rank adaptation (LoRA), parameter sharing presents a promising solution. Empirically, our research into high-level sharing principles highlights the indispensable role of differentiation in reversing the detrimental effects of pure sharing. Guided by this finding, we propose Mixture of Shards (MoS), incorporating both inter-layer and intra-layer sharing schemes, and integrating four nearly cost-free differentiation strategies, namely subset selection, pair dissociation, vector sharding, and shard privatization. Briefly, it selects a designated number of shards from global pools with a Mixture-of-Experts (MoE)-like routing mechanism before sequentially concatenating them to low-rank matrices. Hence, it retains all the advantages of LoRA while offering enhanced parameter efficiency, and effectively circumvents the drawbacks of peer parameter-sharing methods. Our empirical experiments demonstrate approximately 8x parameter savings in a standard LoRA setting. The ablation study confirms the significance of each component. Our insights into parameter sharing and MoS method may illuminate future developments of more parameter-efficient finetuning methods.