Chen, Min
Label-less Learning for Traffic Control in an Edge Network
Chen, Min, Hao, Yixue, Lin, Kai, Yuan, Zhiyong, Hu, Long
Abstract--With the development of intelligent applications (e.g., self-driving, real-time emotion recognition, etc), there are higher requirements for the cloud intelligence. However, cloud intelligence depends on the multi-modal data collected by user equipments (UEs). Due to the limited capacity of network bandwidth, offloading all data generated from the UEs to the remote cloud is impractical. Thus, in this article, we consider the challenging issue of achieving a certain level of cloud intelligence while reducing network traffic. In order to solve this problem, we design a traffic control algorithm based on label-less learning on the edge cloud, which is dubbed as LLTC. By the use of the limited computing and storage resources at edge cloud, LLTC evaluates the value of data, which will be offloaded. Specifically, we first give a statement of the problem and the system architecture. Finally, we set up the system testbed. Experimental results show that the proposed LLTC can guarantee the required cloud intelligence while minimizing the amount of data transmission.
Trust-Aware Decision Making for Human-Robot Collaboration: Model Learning and Planning
Chen, Min, Nikolaidis, Stefanos, Soh, Harold, Hsu, David, Srinivasa, Siddhartha
Trust in autonomy is essential for effective human-robot collaboration and user adoption of autonomous systems such as robot assistants. This paper introduces a computational model which integrates trust into robot decision-making. Specifically, we learn from data a partially observable Markov decision process (POMDP) with human trust as a latent variable. The trust-POMDP model provides a principled approach for the robot to (i) infer the trust of a human teammate through interaction, (ii) reason about the effect of its own actions on human trust, and (iii) choose actions that maximize team performance over the long term. We validated the model through human subject experiments on a table-clearing task in simulation (201 participants) and with a real robot (20 participants). In our studies, the robot builds human trust by manipulating low-risk objects first. Interestingly, the robot sometimes fails intentionally in order to modulate human trust and achieve the best team performance. These results show that the trust-POMDP calibrates trust to improve human-robot team performance over the long term. Further, they highlight that maximizing trust alone does not always lead to the best performance.