Plotting

 Chen, Min


Simulation-Based Optimization of User Interfaces for Quality-Assuring Machine Learning Model Predictions

arXiv.org Artificial Intelligence

Quality-sensitive applications of machine learning (ML) require quality assurance (QA) by humans before the predictions of an ML model can be deployed. QA for ML (QA4ML) interfaces require users to view a large amount of data and perform many interactions to correct errors made by the ML model. An optimized user interface (UI) can significantly reduce interaction costs. While UI optimization can be informed by user studies evaluating design options, this approach is not scalable because there are typically numerous small variations that can affect the efficiency of a QA4ML interface. Hence, we propose using simulation to evaluate and aid the optimization of QA4ML interfaces. In particular, we focus on simulating the combined effects of human intelligence in initiating appropriate interaction commands and machine intelligence in providing algorithmic assistance for accelerating QA4ML processes. As QA4ML is usually labor-intensive, we use the simulated task completion time as the metric for UI optimization under different interface and algorithm setups. We demonstrate the usage of this UI design method in several QA4ML applications.


Explore More Guidance: A Task-aware Instruction Network for Sign Language Translation Enhanced with Data Augmentation

arXiv.org Artificial Intelligence

Sign language recognition and translation first uses a recognition module to generate glosses from sign language videos and then employs a translation module to translate glosses into spoken sentences. Most existing works focus on the recognition step, while paying less attention to sign language translation. In this work, we propose a task-aware instruction network, namely TIN-SLT, for sign language translation, by introducing the instruction module and the learning-based feature fuse strategy into a Transformer network. In this way, the pre-trained model's language ability can be well explored and utilized to further boost the translation performance. Moreover, by exploring the representation space of sign language glosses and target spoken language, we propose a multi-level data augmentation scheme to adjust the data distribution of the training set. We conduct extensive experiments on two challenging benchmark datasets, PHOENIX-2014-T and ASLG-PC12, on which our method outperforms former best solutions by 1.65 and 1.42 in terms of BLEU-4. Our code is published at https://github.com/yongcaoplus/TIN-SLT.


Pay More Attention to Relation Exploration for Knowledge Base Question Answering

arXiv.org Artificial Intelligence

Knowledge base question answering (KBQA) is a challenging task that aims to retrieve correct answers from large-scale knowledge bases. Existing attempts primarily focus on entity representation and final answer reasoning, which results in limited supervision for this task. Moreover, the relations, which empirically determine the reasoning path selection, are not fully considered in recent advancements. In this study, we propose a novel framework, RE-KBQA, that utilizes relations in the knowledge base to enhance entity representation and introduce additional supervision. We explore guidance from relations in three aspects, including (1) distinguishing similar entities by employing a variational graph auto-encoder to learn relation importance; (2) exploring extra supervision by predicting relation distributions as soft labels with a multi-task scheme; (3) designing a relation-guided re-ranking algorithm for post-processing. Experimental results on two benchmark datasets demonstrate the effectiveness and superiority of our framework, improving the F1 score by 5.7% from 40.5 to 46.3 on CWQ and 5.8% from 62.8 to 68.5 on WebQSP, better or on par with state-of-the-art methods.


Assessing Cross-Cultural Alignment between ChatGPT and Human Societies: An Empirical Study

arXiv.org Artificial Intelligence

The recent release of ChatGPT has garnered widespread recognition for its exceptional ability to generate human-like responses in dialogue. Given its usage by users from various nations and its training on a vast multilingual corpus that incorporates diverse cultural and societal norms, it is crucial to evaluate its effectiveness in cultural adaptation. In this paper, we investigate the underlying cultural background of ChatGPT by analyzing its responses to questions designed to quantify human cultural differences. Our findings suggest that, when prompted with American context, ChatGPT exhibits a strong alignment with American culture, but it adapts less effectively to other cultural contexts. Furthermore, by using different prompts to probe the model, we show that English prompts reduce the variance in model responses, flattening out cultural differences and biasing them towards American culture. This study provides valuable insights into the cultural implications of ChatGPT and highlights the necessity of greater diversity and cultural awareness in language technologies.


Visualizing Ensemble Predictions of Music Mood

arXiv.org Artificial Intelligence

Music mood classification has been a challenging problem in comparison with some other classification problems (e.g., genre, composer, or period). One solution for addressing this challenging is to use an of ensemble machine learning models. In this paper, we show that visualization techniques can effectively convey the popular prediction as well as uncertainty at different music sections along the temporal axis, while enabling the analysis of individual ML models in conjunction with their application to different musical data. In addition to the traditional visual designs, such as stacked line graph, ThemeRiver, and pixel-based visualization, we introduced a new variant of ThemeRiver, called "dual-flux ThemeRiver", which allows viewers to observe and measure the most popular prediction more easily than stacked line graph and ThemeRiver. Testing indicates that visualizing ensemble predictions is helpful both in model-development workflows and for annotating music using model predictions.


Inference Attacks Against Graph Neural Networks

arXiv.org Machine Learning

Graph is an important data representation ubiquitously existing in the real world. However, analyzing the graph data is computationally difficult due to its non-Euclidean nature. Graph embedding is a powerful tool to solve the graph analytics problem by transforming the graph data into low-dimensional vectors. These vectors could also be shared with third parties to gain additional insights of what is behind the data. While sharing graph embedding is intriguing, the associated privacy risks are unexplored. In this paper, we systematically investigate the information leakage of the graph embedding by mounting three inference attacks. First, we can successfully infer basic graph properties, such as the number of nodes, the number of edges, and graph density, of the target graph with up to 0.89 accuracy. Second, given a subgraph of interest and the graph embedding, we can determine with high confidence that whether the subgraph is contained in the target graph. For instance, we achieve 0.98 attack AUC on the DD dataset. Third, we propose a novel graph reconstruction attack that can reconstruct a graph that has similar graph structural statistics to the target graph. We further propose an effective defense mechanism based on graph embedding perturbation to mitigate the inference attacks without noticeable performance degradation for graph classification tasks. Our code is available at https://github.com/Zhangzhk0819/GNN-Embedding-Leaks.


A Survey on Federated Learning and its Applications for Accelerating Industrial Internet of Things

arXiv.org Artificial Intelligence

Federated learning (FL) brings collaborative intelligence into industries without centralized training data to accelerate the process of Industry 4.0 on the edge computing level. FL solves the dilemma in which enterprises wish to make the use of data intelligence with security concerns. To accelerate industrial Internet of things with the further leverage of FL, existing achievements on FL are developed from three aspects: 1) define terminologies and elaborate a general framework of FL for accommodating various scenarios; 2) discuss the state-of-the-art of FL on fundamental researches including data partitioning, privacy preservation, model optimization, local model transportation, personalization, motivation mechanism, platform & tools, and benchmark; 3) discuss the impacts of FL from the economic perspective. To attract more attention from industrial academia and practice, a FL-transformed manufacturing paradigm is presented, and future research directions of FL are given and possible immediate applications in Industry 4.0 domain are also proposed.


Graph Unlearning

arXiv.org Artificial Intelligence

The right to be forgotten states that a data subject has the right to erase their data from an entity storing it. In the context of machine learning (ML), it requires the ML model provider to remove the data subject's data from the training set used to build the ML model, a process known as \textit{machine unlearning}. While straightforward and legitimate, retraining the ML model from scratch upon receiving unlearning requests incurs high computational overhead when the training set is large. To address this issue, a number of approximate algorithms have been proposed in the domain of image and text data, among which SISA is the state-of-the-art solution. It randomly partitions the training set into multiple shards and trains a constituent model for each shard. However, directly applying SISA to the graph data can severely damage the graph structural information, and thereby the resulting ML model utility. In this paper, we propose GraphEraser, a novel machine unlearning method tailored to graph data. Its contributions include two novel graph partition algorithms, and a learning-based aggregation method. We conduct extensive experiments on five real-world datasets to illustrate the unlearning efficiency and model utility of GraphEraser. We observe that GraphEraser achieves 2.06$\times$ (small dataset) to 35.94$\times$ (large dataset) unlearning time improvement compared to retraining from scratch. On the other hand, GraphEraser achieves up to $62.5\%$ higher F1 score than that of random partitioning. In addition, our proposed learning-based aggregation method achieves up to $112\%$ higher F1 score than that of the majority vote aggregation.


When Machine Unlearning Jeopardizes Privacy

arXiv.org Machine Learning

The right to be forgotten states that a data owner has the right to erase her data from an entity storing it. In the context of machine learning (ML), the right to be forgotten requires an ML model owner to remove the data owner's data from the training set used to build the ML model, a process known as machine unlearning. While originally designed to protect the privacy of the data owner, we argue that machine unlearning may leave some imprint of the data in the ML model and thus create unintended privacy risks. In this paper, we perform the first study on investigating the unintended information leakage caused by machine unlearning. We propose a novel membership inference attack which leverages the different outputs of an ML model's two versions to infer whether the deleted sample is part of the training set. Our experiments over five different datasets demonstrate that the proposed membership inference attack achieves strong performance. More importantly, we show that our attack in multiple cases outperforms the classical membership inference attack on the original ML model, which indicates that machine unlearning can have counterproductive effects on privacy. We notice that the privacy degradation is especially significant for well-generalized ML models where classical membership inference does not perform well. We further investigate two mechanisms to mitigate the newly discovered privacy risks and show that the only effective mechanism is to release the predicted label only. We believe that our results can help improve privacy in practical implementation of machine unlearning.


Hierarchical Reinforcement Learning for Multi-agent MOBA Game

arXiv.org Artificial Intelligence

Although deep reinforcement learning has achieved great success recently, there are still challenges in Real Time Strategy (RTS) games. Due to its large state and action space, as well as hidden information, RTS games require macro strategies as well as micro level manipulation to obtain satisfactory performance. In this paper, we present a novel hierarchical reinforcement learning model for mastering Multiplayer Online Battle Arena (MOBA) games, a sub-genre of RTS games. In this hierarchical framework, agents make macro strategies by imitation learning and do micromanipulations through reinforcement learning. Moreover, we propose a simple self-learning method to get better sample efficiency for reinforcement part and extract some global features by multi-target detection method in the absence of game engine or API. In 1v1 mode, our agent successfully learns to combat and defeat built-in AI with 100\% win rate, and experiments show that our method can create a competitive multi-agent for a kind of mobile MOBA game King of Glory (KOG) in 5v5 mode.