Goto

Collaborating Authors

 Chen, Longbiao


Research on Foundation Model for Spatial Data Intelligence: China's 2024 White Paper on Strategic Development of Spatial Data Intelligence

arXiv.org Artificial Intelligence

Research status and development trends; on this basis, this report proposes three major challenges faced by large spatial data intelligent models today. This report focuses on the current research status of spatial data intelligent large-scale models and sorts out the research progress in four major thematic areas of spatial data intelligent large-scale models: cities, air and space remote sensing, geography, and transportation. This report systematically introduces the key technologies, characteristics and advantages, research status, future development and other core information of spatial data intelligent large models, involving spatiotemporal big data platforms, distributed computing, 3D virtual reality, space The basic performance of large models such as analysis and visualization, as well as the complex spatial comprehensive performance of large models such as geospatial intelligent computing, deep learning, high-performance processing of big data, geographical knowledge graphs, and geographical intelligent multi-scenario simulation, analyze the application of the above key technologies in spatial data The location and role of smart large models.


INCREASE: Inductive Graph Representation Learning for Spatio-Temporal Kriging

arXiv.org Artificial Intelligence

Spatio-temporal kriging is an important problem in web and social applications, such as Web or Internet of Things, where things (e.g., sensors) connected into a web often come with spatial and temporal properties. It aims to infer knowledge for (the things at) unobserved locations using the data from (the things at) observed locations during a given time period of interest. This problem essentially requires \emph{inductive learning}. Once trained, the model should be able to perform kriging for different locations including newly given ones, without retraining. However, it is challenging to perform accurate kriging results because of the heterogeneous spatial relations and diverse temporal patterns. In this paper, we propose a novel inductive graph representation learning model for spatio-temporal kriging. We first encode heterogeneous spatial relations between the unobserved and observed locations by their spatial proximity, functional similarity, and transition probability. Based on each relation, we accurately aggregate the information of most correlated observed locations to produce inductive representations for the unobserved locations, by jointly modeling their similarities and differences. Then, we design relation-aware gated recurrent unit (GRU) networks to adaptively capture the temporal correlations in the generated sequence representations for each relation. Finally, we propose a multi-relation attention mechanism to dynamically fuse the complex spatio-temporal information at different time steps from multiple relations to compute the kriging output. Experimental results on three real-world datasets show that our proposed model outperforms state-of-the-art methods consistently, and the advantage is more significant when there are fewer observed locations. Our code is available at https://github.com/zhengchuanpan/INCREASE.


ConTIG: Continuous Representation Learning on Temporal Interaction Graphs

arXiv.org Artificial Intelligence

Representation learning on temporal interaction graphs (TIG) is to model complex networks with the dynamic evolution of interactions arising in a broad spectrum of problems. Existing dynamic embedding methods on TIG discretely update node embeddings merely when an interaction occurs. They fail to capture the continuous dynamic evolution of embedding trajectories of nodes. In this paper, we propose a two-module framework named ConTIG, a continuous representation method that captures the continuous dynamic evolution of node embedding trajectories. With two essential modules, our model exploit three-fold factors in dynamic networks which include latest interaction, neighbor features and inherent characteristics. In the first update module, we employ a continuous inference block to learn the nodes' state trajectories by learning from time-adjacent interaction patterns between node pairs using ordinary differential equations. In the second transform module, we introduce a self-attention mechanism to predict future node embeddings by aggregating historical temporal interaction information. Experiments results demonstrate the superiority of ConTIG on temporal link prediction, temporal node recommendation and dynamic node classification tasks compared with a range of state-of-the-art baselines, especially for long-interval interactions prediction.