Goto

Collaborating Authors

 Chen, Liang


LFME: A Simple Framework for Learning from Multiple Experts in Domain Generalization

arXiv.org Artificial Intelligence

Domain generalization (DG) methods aim to maintain good performance in an unseen target domain by using training data from multiple source domains. While success on certain occasions are observed, enhancing the baseline across most scenarios remains challenging. This work introduces a simple yet effective framework, dubbed learning from multiple experts (LFME), that aims to make the target model an expert in all source domains to improve DG. Specifically, besides learning the target model used in inference, LFME will also train multiple experts specialized in different domains, whose output probabilities provide professional guidance by simply regularizing the logit of the target model. Delving deep into the framework, we reveal that the introduced logit regularization term implicitly provides effects of enabling the target model to harness more information, and mining hard samples from the experts during training. Extensive experiments on benchmarks from different DG tasks demonstrate that LFME is consistently beneficial to the baseline and can achieve comparable performance to existing arts.


SG-FSM: A Self-Guiding Zero-Shot Prompting Paradigm for Multi-Hop Question Answering Based on Finite State Machine

arXiv.org Artificial Intelligence

Large Language Models with chain-of-thought prompting, such as OpenAI-o1, have shown impressive capabilities in natural language inference tasks. However, Multi-hop Question Answering (MHQA) remains challenging for many existing models due to issues like hallucination, error propagation, and limited context length. To address these challenges and enhance LLMs' performance on MHQA, we propose the Self-Guiding prompting Finite State Machine (SG-FSM), designed to strengthen multi-hop reasoning abilities. Unlike traditional chain-of-thought methods, SG-FSM tackles MHQA by iteratively breaking down complex questions into sub-questions, correcting itself to improve accuracy. It processes one sub-question at a time, dynamically deciding the next step based on the current context and results, functioning much like an automaton. Experiments across various benchmarks demonstrate the effectiveness of our approach, outperforming strong baselines on challenging datasets such as Musique. SG-FSM reduces hallucination, enabling recovery of the correct final answer despite intermediate errors. It also improves adherence to specified output formats, simplifying evaluation significantly.


VLFeedback: A Large-Scale AI Feedback Dataset for Large Vision-Language Models Alignment

arXiv.org Artificial Intelligence

As large vision-language models (LVLMs) evolve rapidly, the demand for high-quality and diverse data to align these models becomes increasingly crucial. However, the creation of such data with human supervision proves costly and time-intensive. In this paper, we investigate the efficacy of AI feedback to scale supervision for aligning LVLMs. We introduce VLFeedback, the first large-scale vision-language feedback dataset, comprising over 82K multi-modal instructions and comprehensive rationales generated by off-the-shelf models without human annotations. To evaluate the effectiveness of AI feedback for vision-language alignment, we train Silkie, an LVLM fine-tuned via direct preference optimization on VLFeedback. Silkie showcases exceptional performance regarding helpfulness, visual faithfulness, and safety metrics. It outperforms its base model by 6.9\% and 9.5\% in perception and cognition tasks, reduces hallucination issues on MMHal-Bench, and exhibits enhanced resilience against red-teaming attacks. Furthermore, our analysis underscores the advantage of AI feedback, particularly in fostering preference diversity to deliver more comprehensive improvements. Our dataset, training code and models are available at https://vlf-silkie.github.io.


Athena: Retrieval-augmented Legal Judgment Prediction with Large Language Models

arXiv.org Artificial Intelligence

Recently, large language models (LLMs) like ChatGPT, LLaMA, and Claude have prevailed in countless domains, including legal scenarios. With LLMs' rapid technological progress, the development of prompt engineering (PE) as an interface between the LLMs and real-world applications has drawn the attention of all developers. Various PE methods have been proposed to overcome real-world challenges, such as few-shot prompting, chain-of-thought, and retrieval-augmented generation (RAG). However, RAG for legal judgment prediction (LJP) is still underexplored. To address this, we propose "Athena", a novel framework cultivating RAG as a core preprocess component to enhance LLMs' performance on specialized tasks. Athena constructs a knowledge base for accusations, attached with a semantic retrieval mechanism through vectorization. Our experiments show that Athena's overall performance has improved significantly, achieving state-of-the-art results on the CAIL2018 dataset. Our ablation study on the in-context window size parameter further reproduces LLMs' "lost-in-the-middle" phenomenon with a relative positional variation. And with moderate hyper-parameter-tuning, we can achieve at most 95% of accuracy accordingly. We also study the impact of query rewriting and data distribution, providing possible directions for future research based on former analyses.


Revisiting and Benchmarking Graph Autoencoders: A Contrastive Learning Perspective

arXiv.org Machine Learning

Graph autoencoders (GAEs) are self-supervised learning models that can learn meaningful representations of graph-structured data by reconstructing the input graph from a low-dimensional latent space. Over the past few years, GAEs have gained significant attention in academia and industry. In particular, the recent advent of GAEs with masked autoencoding schemes marks a significant advancement in graph self-supervised learning research. While numerous GAEs have been proposed, the underlying mechanisms of GAEs are not well understood, and a comprehensive benchmark for GAEs is still lacking. We revisit the GAEs studied in previous works and demonstrate how contrastive learning principles can be applied to GAEs. Motivated by these insights, we introduce lrGAE (left-right GAE), a general and powerful GAE framework that leverages contrastive learning principles to learn meaningful representations. Our proposed lrGAE not only facilitates a deeper understanding of GAEs but also sets a new benchmark for GAEs across diverse graph-based learning tasks. In the last years, self-supervised learning (SSL) has emerged as a powerful learning paradigm for learning graph representations, approaching, and sometimes even surpassing, the performance of supervised counterparts on many downstream tasks Hjelm et al. (2019); van den Oord et al. (2018). Compared with supervised learning, self-supervised learning gets equal or even better performance with limited or no-labeled data which saves much annotation time and plenty of resources. In a nutshell, SSL purely makes use of rich unlabeled data via well-designed pretext tasks that exploit the underlying structure and patterns in the data. Most recent approaches are shaped by the design of pretext tasks and architectural design, which has led to two lines of research: contrastive and non-contrastive learning Garrido et al. (2023); Balestriero & LeCun (2022). As one of the most successful and widespread SSL strategies, contrastive learning has first shown promising performance in vision representation learning Chen et al. (2020); Gao et al. (2021). It brings together embeddings of different views of the same image while pushing away the embeddings from different ones. Contrastive learning develops rapidly and has recently been applied to the graph learning domain because of the scarcity of graph datasets with labels.


A Spark of Vision-Language Intelligence: 2-Dimensional Autoregressive Transformer for Efficient Finegrained Image Generation

arXiv.org Artificial Intelligence

Figure 1: Generations from DnD-Transformers trained on class-conditional ImageNet256 256 (a.top) and unconditional arXiv images (a.bottom). Unconditional rich-text image generations by trained diffusion (b.1) and autoregressive model (b.2), This work tackles the information loss bottleneck of vector-quantization (VQ) autoregressive image generation by introducing a novel model architecture called the 2-Dimensional Autoregression (DnD) Transformer. The DnD-Transformer predicts more codes for an image by introducing a new autoregression direction, model depth, along with the sequence length direction. Compared to traditional 1D autoregression and previous work utilizing similar 2D image decomposition such as RQ-Transformer, the DnD-Transformer is an end-to-end model that can generate higher quality images with the same backbone model size and sequence length, opening a new optimization perspective for autoregressive image generation. Furthermore, our experiments reveal that the DnD-Transformer's potential extends beyond generating natural images. It can even generate images with rich text and graphical elements in a self-supervised manner, demonstrating an understanding of these combined modalities. This has not been previously demonstrated for popular vision generative models such as diffusion models, showing a spark of vision-language intelligence when trained solely on images. The field of autoregressive (AR) image generation is experiencing a resurgence of interest, largely driven by groundbreaking advancements in large language models (LLMs), exemplified by the release of ChatGPT (OpenAI, 2022). Because typical AR image generation methods also predict output in a next-token prediction manner, this resemblance has sparked significant efforts in two main areas: 1) transferring advanced, large-scale training techniques and expertise from LLMs to AR image generation models (Bai et al., 2023; Tian et al., 2024; Sun et al., 2024), and 2) developing truly multimodal foundation models capable of both understanding and generating multimodal information within a unified training framework (Lu et al., 2022; 2023; Team, 2024).


Rankability-enhanced Revenue Uplift Modeling Framework for Online Marketing

arXiv.org Artificial Intelligence

Uplift modeling has been widely employed in online marketing by predicting the response difference between the treatment and control groups, so as to identify the sensitive individuals toward interventions like coupons or discounts. Compared with traditional \textit{conversion uplift modeling}, \textit{revenue uplift modeling} exhibits higher potential due to its direct connection with the corporate income. However, previous works can hardly handle the continuous long-tail response distribution in revenue uplift modeling. Moreover, they have neglected to optimize the uplift ranking among different individuals, which is actually the core of uplift modeling. To address such issues, in this paper, we first utilize the zero-inflated lognormal (ZILN) loss to regress the responses and customize the corresponding modeling network, which can be adapted to different existing uplift models. Then, we study the ranking-related uplift modeling error from the theoretical perspective and propose two tighter error bounds as the additional loss terms to the conventional response regression loss. Finally, we directly model the uplift ranking error for the entire population with a listwise uplift ranking loss. The experiment results on offline public and industrial datasets validate the effectiveness of our method for revenue uplift modeling. Furthermore, we conduct large-scale experiments on a prominent online fintech marketing platform, Tencent FiT, which further demonstrates the superiority of our method in real-world applications.


State Space Models on Temporal Graphs: A First-Principles Study

arXiv.org Artificial Intelligence

Over the past few years, research on deep graph learning has shifted from static graphs to temporal graphs in response to real-world complex systems that exhibit dynamic behaviors. In practice, temporal graphs are formalized as an ordered sequence of static graph snapshots observed at discrete time points. Sequence models such as RNNs or Transformers have long been the predominant backbone networks for modeling such temporal graphs. Yet, despite the promising results, RNNs struggle with long-range dependencies, while transformers are burdened by quadratic computational complexity. Recently, state space models (SSMs), which are framed as discretized representations of an underlying continuous-time linear dynamical system, have garnered substantial attention and achieved breakthrough advancements in independent sequence modeling. In this work, we undertake a principled investigation that extends SSM theory to temporal graphs by integrating structural information into the online approximation objective via the adoption of a Laplacian regularization term. The emergent continuous-time system introduces novel algorithmic challenges, thereby necessitating our development of GraphSSM, a graph state space model for modeling the dynamics of temporal graphs. Extensive experimental results demonstrate the effectiveness of our GraphSSM framework across various temporal graph benchmarks.


Fair Graph Representation Learning via Sensitive Attribute Disentanglement

arXiv.org Artificial Intelligence

Group fairness for Graph Neural Networks (GNNs), which emphasizes algorithmic decisions neither favoring nor harming certain groups defined by sensitive attributes (e.g., race and gender), has gained considerable attention. In particular, the objective of group fairness is to ensure that the decisions made by GNNs are independent of the sensitive attribute. To achieve this objective, most existing approaches involve eliminating sensitive attribute information in node representations or algorithmic decisions. However, such ways may also eliminate task-related information due to its inherent correlation with the sensitive attribute, leading to a sacrifice in utility. In this work, we focus on improving the fairness of GNNs while preserving task-related information and propose a fair GNN framework named FairSAD. Instead of eliminating sensitive attribute information, FairSAD enhances the fairness of GNNs via Sensitive Attribute Disentanglement (SAD), which separates the sensitive attribute-related information into an independent component to mitigate its impact. Additionally, FairSAD utilizes a channel masking mechanism to adaptively identify the sensitive attribute-related component and subsequently decorrelates it. Overall, FairSAD minimizes the impact of the sensitive attribute on GNN outcomes rather than eliminating sensitive attributes, thereby preserving task-related information associated with the sensitive attribute. Furthermore, experiments conducted on several real-world datasets demonstrate that FairSAD outperforms other state-of-the-art methods by a significant margin in terms of both fairness and utility performance. Our source code is available at https://github.com/ZzoomD/FairSAD.


Parameter-Efficient Fine-Tuning with Discrete Fourier Transform

arXiv.org Artificial Intelligence

Low-rank adaptation~(LoRA) has recently gained much interest in fine-tuning foundation models. It effectively reduces the number of trainable parameters by incorporating low-rank matrices $A$ and $B$ to represent the weight change, i.e., $\Delta W=BA$. Despite LoRA's progress, it faces storage challenges when handling extensive customization adaptations or larger base models. In this work, we aim to further compress trainable parameters by enjoying the powerful expressiveness of the Fourier transform. Specifically, we introduce FourierFT, which treats $\Delta W$ as a matrix in the spatial domain and learns only a small fraction of its spectral coefficients. With the trained spectral coefficients, we implement the inverse discrete Fourier transform to recover $\Delta W$. Empirically, our FourierFT method shows comparable or better performance with fewer parameters than LoRA on various tasks, including natural language understanding, natural language generation, instruction tuning, and image classification. For example, when performing instruction tuning on the LLaMA2-7B model, FourierFT surpasses LoRA with only 0.064M trainable parameters, compared to LoRA's 33.5M. Our code is released at \url{https://github.com/Chaos96/fourierft}.