Goto

Collaborating Authors

 Chen, Ke


Nonlinear Principal Component Analysis with Random Bernoulli Features for Process Monitoring

arXiv.org Machine Learning

The process generates substantial amounts of data with highly complex structures, leading to the development of numerous nonlinear statistical methods. However, most of these methods rely on computations involving large-scale dense kernel matrices. This dependence poses significant challenges in meeting the high computational demands and real-time responsiveness required by online monitoring systems. To alleviate the computational burden of dense large-scale matrix multiplication, we incorporate the bootstrap sampling concept into random feature mapping and propose a novel random Bernoulli principal component analysis method to efficiently capture nonlinear patterns in the process. We derive a convergence bound for the kernel matrix approximation constructed using random Bernoulli features, ensuring theoretical robustness. Subsequently, we design four fast process monitoring methods based on random Bernoulli principal component analysis to extend its nonlinear capabilities for handling diverse fault scenarios. Finally, numerical experiments and real-world data analyses are conducted to evaluate the performance of the proposed methods. Results demonstrate that the proposed methods offer excellent scalability and reduced computational complexity, achieving substantial cost savings with minimal performance loss compared to traditional kernel-based approaches.


Train Small, Infer Large: Memory-Efficient LoRA Training for Large Language Models

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have significantly advanced natural language processing with exceptional task generalization capabilities. Low-Rank Adaption (LoRA) offers a cost-effective fine-tuning solution, freezing the original model parameters and training only lightweight, low-rank adapter matrices. However, the memory footprint of LoRA is largely dominated by the original model parameters. To mitigate this, we propose LoRAM, a memory-efficient LoRA training scheme founded on the intuition that many neurons in over-parameterized LLMs have low training utility but are essential for inference. LoRAM presents a unique twist: it trains on a pruned (small) model to obtain pruned low-rank matrices, which are then recovered and utilized with the original (large) model for inference. Additionally, minimal-cost continual pre-training, performed by the model publishers in advance, aligns the knowledge discrepancy between pruned and original models. Our extensive experiments demonstrate the efficacy of LoRAM across various pruning strategies and downstream tasks. For a model with 70 billion parameters, LoRAM enables training on a GPU with only 20G HBM, replacing an A100-80G GPU for LoRA training and 15 GPUs for full fine-tuning. Specifically, QLoRAM implemented by structured pruning combined with 4-bit quantization, for LLaMA-3.1-70B (LLaMA-2-70B), reduces the parameter storage cost that dominates the memory usage in low-rank matrix training by 15.81$\times$ (16.95$\times$), while achieving dominant performance gains over both the original LLaMA-3.1-70B (LLaMA-2-70B) and LoRA-trained LLaMA-3.1-8B (LLaMA-2-13B). Code is available at https://github.com/junzhang-zj/LoRAM.


SCOPE-DTI: Semi-Inductive Dataset Construction and Framework Optimization for Practical Usability Enhancement in Deep Learning-Based Drug Target Interaction Prediction

arXiv.org Artificial Intelligence

Deep learning-based drug-target interaction (DTI) prediction methods have demonstrated strong performance; however, real-world applicability remains constrained by limited data diversity and modeling complexity. To address these challenges, we propose SCOPE-DTI, a unified framework combining a large-scale, balanced semi-inductive human DTI dataset with advanced deep learning modeling. Constructed from 13 public repositories, the SCOPE dataset expands data volume by up to 100-fold compared to common benchmarks such as the Human dataset. The SCOPE model integrates three-dimensional protein and compound representations, graph neural networks, and bilinear attention mechanisms to effectively capture cross domain interaction patterns, significantly outperforming state-of-the-art methods across various DTI prediction tasks. Additionally, SCOPE-DTI provides a user-friendly interface and database. We further validate its effectiveness by experimentally identifying anticancer targets of Ginsenoside Rh1. By offering comprehensive data, advanced modeling, and accessible tools, SCOPE-DTI accelerates drug discovery research.


Gemini Embedding: Generalizable Embeddings from Gemini

arXiv.org Artificial Intelligence

Embedding models, which transform inputs into dense vector representations, are pivotal for capturing semantic information across various domains and modalities. Text embedding models represent words and sentences as vectors, strategically positioning semantically similar texts in close proximity within the embedding space (Gao et al., 2021; Le and Mikolov, 2014; Reimers and Gurevych, 2019). Recent research has focused on developing general-purpose embedding models capable of excelling in diverse downstream tasks, including information retrieval, clustering, and classification (Cer et al., 2018; Muennighoff et al., 2023). Leveraging their vast pre-training knowledge, large language models (LLMs) have emerged as a promising avenue for constructing such general-purpose embedding models, with the potential to significantly enhance performance across a broad spectrum of applications (Anil et al., 2023a,b; Brown et al., 2020). The integration of LLMs has revolutionized the development of high-quality embedding models through two primary approaches. Firstly, LLMs have been employed to refine training datasets by generating higher quality examples. Techniques such as hard negative mining (Lee et al., 2024) and synthetic data generation (Dai et al., 2022; Wang et al., 2023) enable the distillation of LLM knowledge into smaller, more efficient embedding models, leading to substantial performance gains. Secondly, recognizing that the embedding model parameters are frequently initialized from language models (Devlin et al., 2019; Karpukhin et al., 2020), researchers have explored leveraging LLM parameters directly for initialization (Ni et al., 2021).


OpenEarthSensing: Large-Scale Fine-Grained Benchmark for Open-World Remote Sensing

arXiv.org Artificial Intelligence

In open-world remote sensing, deployed models must continuously adapt to a steady influx of new data, which often exhibits various shifts compared to what the model encountered during the training phase. To effectively handle the new data, models are required to detect semantic shifts, adapt to covariate shifts, and continuously update themselves. These challenges give rise to a variety of open-world tasks. However, existing open-world remote sensing studies typically train and test within a single dataset to simulate open-world conditions. Currently, there is a lack of large-scale benchmarks capable of evaluating multiple open-world tasks. In this paper, we introduce OpenEarthSensing, a large-scale fine-grained benchmark for open-world remote sensing. OpenEarthSensing includes 189 scene and objects categories, covering the vast majority of potential semantic shifts that may occur in the real world. Additionally, OpenEarthSensing encompasses five data domains with significant covariate shifts, including two RGB satellite domians, one RGB aerial domian, one MS RGB domian, and one infrared domian. The various domains provide a more comprehensive testbed for evaluating the generalization performance of open-world models. We conduct the baseline evaluation of current mainstream open-world tasks and methods on OpenEarthSensing, demonstrating that it serves as a challenging benchmark for open-world remote sensing.


Preventing the Popular Item Embedding Based Attack in Federated Recommendations

arXiv.org Artificial Intelligence

Privacy concerns have led to the rise of federated recommender systems (FRS), which can create personalized models across distributed clients. However, FRS is vulnerable to poisoning attacks, where malicious users manipulate gradients to promote their target items intentionally. Existing attacks against FRS have limitations, as they depend on specific models and prior knowledge, restricting their real-world applicability. In our exploration of practical FRS vulnerabilities, we devise a model-agnostic and prior-knowledge-free attack, named PIECK (Popular Item Embedding based Attack). The core module of PIECK is popular item mining, which leverages embedding changes during FRS training to effectively identify the popular items. Built upon the core module, PIECK branches into two diverse solutions: The PIECKIPE solution employs an item popularity enhancement module, which aligns the embeddings of targeted items with the mined popular items to increase item exposure. The PIECKUEA further enhances the robustness of the attack by using a user embedding approximation module, which approximates private user embeddings using mined popular items. Upon identifying PIECK, we evaluate existing federated defense methods and find them ineffective against PIECK, as poisonous gradients inevitably overwhelm the cold target items. We then propose a novel defense method by introducing two regularization terms during user training, which constrain item popularity enhancement and user embedding approximation while preserving FRS performance. We evaluate PIECK and its defense across two base models, three real datasets, four top-tier attacks, and six general defense methods, affirming the efficacy of both PIECK and its defense.


In-Dataset Trajectory Return Regularization for Offline Preference-based Reinforcement Learning

arXiv.org Artificial Intelligence

Offline preference-based reinforcement learning (PbRL) typically operates in two phases: first, use human preferences to learn a reward model and annotate rewards for a reward-free offline dataset; second, learn a policy by optimizing the learned reward via offline RL. However, accurately modeling step-wise rewards from trajectory-level preference feedback presents inherent challenges. The reward bias introduced, particularly the overestimation of predicted rewards, leads to optimistic trajectory stitching, which undermines the pessimism mechanism critical to the offline RL phase. To address this challenge, we propose In-Dataset Trajectory Return Regularization (DTR) for offline PbRL, which leverages conditional sequence modeling to mitigate the risk of learning inaccurate trajectory stitching under reward bias. Specifically, DTR employs Decision Transformer and TD-Learning to strike a balance between maintaining fidelity to the behavior policy with high in-dataset trajectory returns and selecting optimal actions based on high reward labels. Additionally, we introduce an ensemble normalization technique that effectively integrates multiple reward models, balancing the tradeoff between reward differentiation and accuracy. Empirical evaluations on various benchmarks demonstrate the superiority of DTR over other state-of-the-art baselines.


A Comprehensive Study of Shapley Value in Data Analytics

arXiv.org Artificial Intelligence

Over the recent years, Shapley value (SV), a solution concept from cooperative game theory, has found numerous applications in data analytics (DA). This paper provides the first comprehensive study of SV used throughout the DA workflow, which involves three main steps: data fabric, data exploration, and result reporting. We summarize existing versatile forms of SV used in these steps by a unified definition and clarify the essential functionalities that SV can provide for data scientists. We categorize the arts in this field based on the technical challenges they tackled, which include computation efficiency, approximation error, privacy preservation, and appropriate interpretations. We discuss these challenges and analyze the corresponding solutions. We also implement SVBench, the first open-sourced benchmark for developing SV applications, and conduct experiments on six DA tasks to validate our analysis and discussions. Based on the qualitative and quantitative results, we identify the limitations of current efforts for applying SV to DA and highlight the directions of future research and engineering.


KcMF: A Knowledge-compliant Framework for Schema and Entity Matching with Fine-tuning-free LLMs

arXiv.org Artificial Intelligence

Schema and entity matching tasks are crucial for data integration and management. While large language models (LLMs) have shown promising results in these tasks, they suffer from hallucinations and confusion about task instructions. In this paper, we present the Knowledge-Compliant Matching Framework (KcMF), an LLM-based approach that addresses these issues without the need for domain-specific fine-tuning. KcMF employs a pseudo-code-based task decomposition strategy to adopt task-specific natural language statements that guide LLM reasoning and reduce confusion. We also propose two mechanisms, Dataset as Knowledge (DaK) and Example as Knowledge (EaK), to build domain knowledge sets when unstructured domain knowledge is lacking. Additionally, we introduce a result-ensembling strategy to leverage multiple knowledge sources and suppress poorly formatted outputs. Comprehensive evaluations on schema and entity matching tasks demonstrate that KcMF outperforms previous non-LLM state-of-the-art (SOTA) methods by an average F1 score of 22.9% and competes effectively with SOTA fine-tuned LLMs. Moreover, KcMF generalizes well across different LLMs.


Towards Better Generalization: Weight Decay Induces Low-rank Bias for Neural Networks

arXiv.org Machine Learning

We study the implicit bias towards low-rank weight matrices when training neural networks (NN) with Weight Decay (WD). We prove that when a ReLU NN is sufficiently trained with Stochastic Gradient Descent (SGD) and WD, its weight matrix is approximately a rank-two matrix. Empirically, we demonstrate that WD is a necessary condition for inducing this low-rank bias across both regression and classification tasks. Our work differs from previous studies as our theoretical analysis does not rely on common assumptions regarding the training data distribution, optimality of weight matrices, or specific training procedures. Furthermore, by leveraging the low-rank bias, we derive improved generalization error bounds and provide numerical evidence showing that better generalization can be achieved. Thus, our work offers both theoretical and empirical insights into the strong generalization performance of SGD when combined with WD.