Chen, Jiayu
Threshold Neuron: A Brain-inspired Artificial Neuron for Efficient On-device Inference
Zheng, Zihao, Li, Yuanchun, Chen, Jiayu, Zhou, Peng, Chen, Xiang, Liu, Yunxin
Enhancing the computational efficiency of on-device Deep Neural Networks (DNNs) remains a significant challengein mobile and edge computing. As we aim to execute increasingly complex tasks with constrained computational resources, much of the research has focused on compressing neural network structures and optimizing systems. Although many studies have focused on compressing neural network structures and parameters or optimizing underlying systems, there has been limited attention on optimizing the fundamental building blocks of neural networks: the neurons. In this study, we deliberate on a simple but important research question: Can we design artificial neurons that offer greater efficiency than the traditional neuron paradigm? Inspired by the threshold mechanisms and the excitation-inhibition balance observed in biological neurons, we propose a novel artificial neuron model, Threshold Neurons. Using Threshold Neurons, we can construct neural networks similar to those with traditional artificial neurons, while significantly reducing hardware implementation complexity. Our extensive experiments validate the effectiveness of neural networks utilizing Threshold Neurons, achieving substantial power savings of 7.51x to 8.19x and area savings of 3.89x to 4.33x at the kernel level, with minimal loss in precision. Furthermore, FPGA-based implementations of these networks demonstrate 2.52x power savings and 1.75x speed enhancements at the system level. The source code will be made available upon publication.
What Matters in Learning A Zero-Shot Sim-to-Real RL Policy for Quadrotor Control? A Comprehensive Study
Chen, Jiayu, Yu, Chao, Xie, Yuqing, Gao, Feng, Chen, Yinuo, Yu, Shu'ang, Tang, Wenhao, Ji, Shilong, Mu, Mo, Wu, Yi, Yang, Huazhong, Wang, Yu
Executing precise and agile flight maneuvers is critical for quadrotors in various applications. Traditional quadrotor control approaches are limited by their reliance on flat trajectories or time-consuming optimization, which restricts their flexibility. Recently, RL-based policy has emerged as a promising alternative due to its ability to directly map observations to actions, reducing the need for detailed system knowledge and actuation constraints. However, a significant challenge remains in bridging the sim-to-real gap, where RL-based policies often experience instability when deployed in real world. In this paper, we investigate key factors for learning robust RL-based control policies that are capable of zero-shot deployment in real-world quadrotors. We identify five critical factors and we develop a PPO-based training framework named SimpleFlight, which integrates these five techniques. We validate the efficacy of SimpleFlight on Crazyflie quadrotor, demonstrating that it achieves more than a 50% reduction in trajectory tracking error compared to state-of-the-art RL baselines. The policy derived by SimpleFlight consistently excels across both smooth polynominal trajectories and challenging infeasible zigzag trajectories on small thrust-to-weight quadrotors. In contrast, baseline methods struggle with high-speed or infeasible trajectories. To support further research and reproducibility, we integrate SimpleFlight into a GPU-based simulator Omnidrones and provide open-source access to the code and model checkpoints. We hope SimpleFlight will offer valuable insights for advancing RL-based quadrotor control. For more details, visit our project website at https://sites.google.com/view/simpleflight/.
Multi-UAV Behavior-based Formation with Static and Dynamic Obstacles Avoidance via Reinforcement Learning
Xie, Yuqing, Yu, Chao, Zang, Hongzhi, Gao, Feng, Tang, Wenhao, Huang, Jingyi, Chen, Jiayu, Xu, Botian, Wu, Yi, Wang, Yu
Formation control of multiple Unmanned Aerial Vehicles (UAVs) is vital for practical applications. This paper tackles the task of behavior-based UAV formation while avoiding static and dynamic obstacles during directed flight. We present a two-stage reinforcement learning (RL) training pipeline to tackle the challenge of multi-objective optimization, large exploration spaces, and the sim-to-real gap. The first stage searches in a simplified scenario for a linear utility function that balances all task objectives simultaneously, whereas the second stage applies the utility function in complex scenarios, utilizing curriculum learning to navigate large exploration spaces. Additionally, we apply an attention-based observation encoder to enhance formation maintenance and manage varying obstacle quantity. Experiments in simulation and real world demonstrate that our method outperforms planning-based and RL-based baselines regarding collision-free rate and formation maintenance in scenarios with static, dynamic, and mixed obstacles.
Bayes Adaptive Monte Carlo Tree Search for Offline Model-based Reinforcement Learning
Chen, Jiayu, Chen, Wentse, Schneider, Jeff
Offline reinforcement learning (RL) is a powerful approach for data-driven decision-making and control. Compared to model-free methods, offline model-based reinforcement learning (MBRL) explicitly learns world models from a static dataset and uses them as surrogate simulators, improving the data efficiency and enabling the learned policy to potentially generalize beyond the dataset support. However, there could be various MDPs that behave identically on the offline dataset and so dealing with the uncertainty about the true MDP can be challenging. In this paper, we propose modeling offline MBRL as a Bayes Adaptive Markov Decision Process (BAMDP), which is a principled framework for addressing model uncertainty. We further introduce a novel Bayes Adaptive Monte-Carlo planning algorithm capable of solving BAMDPs in continuous state and action spaces with stochastic transitions. This planning process is based on Monte Carlo Tree Search and can be integrated into offline MBRL as a policy improvement operator in policy iteration. Our ``RL + Search" framework follows in the footsteps of superhuman AIs like AlphaZero, improving on current offline MBRL methods by incorporating more computation input. The proposed algorithm significantly outperforms state-of-the-art model-based and model-free offline RL methods on twelve D4RL MuJoCo benchmark tasks and three target tracking tasks in a challenging, stochastic tokamak control simulator.
Multi-UAV Pursuit-Evasion with Online Planning in Unknown Environments by Deep Reinforcement Learning
Chen, Jiayu, Yu, Chao, Li, Guosheng, Tang, Wenhao, Yang, Xinyi, Xu, Botian, Yang, Huazhong, Wang, Yu
Multi-UAV pursuit-evasion, where pursuers aim to capture evaders, poses a key challenge for UAV swarm intelligence. Multi-agent reinforcement learning (MARL) has demonstrated potential in modeling cooperative behaviors, but most RL-based approaches remain constrained to simplified simulations with limited dynamics or fixed scenarios. Previous attempts to deploy RL policy to real-world pursuit-evasion are largely restricted to two-dimensional scenarios, such as ground vehicles or UAVs at fixed altitudes. In this paper, we address multi-UAV pursuit-evasion by considering UAV dynamics and physical constraints. We introduce an evader prediction-enhanced network to tackle partial observability in cooperative strategy learning. Additionally, we propose an adaptive environment generator within MARL training, enabling higher exploration efficiency and better policy generalization across diverse scenarios. Simulations show our method significantly outperforms all baselines in challenging scenarios, generalizing to unseen scenarios with a 100% capture rate. Finally, we derive a feasible policy via a two-stage reward refinement and deploy the policy on real quadrotors in a zero-shot manner. To our knowledge, this is the first work to derive and deploy an RL-based policy using collective thrust and body rates control commands for multi-UAV pursuit-evasion in unknown environments. The open-source code and videos are available at https://sites.google.com/view/pursuit-evasion-rl.
Deep Generative Models for Offline Policy Learning: Tutorial, Survey, and Perspectives on Future Directions
Chen, Jiayu, Ganguly, Bhargav, Xu, Yang, Mei, Yongsheng, Lan, Tian, Aggarwal, Vaneet
Deep generative models (DGMs) have demonstrated great success across various domains, particularly in generating texts, images, and videos using models trained from offline data. Similarly, data-driven decision-making and robotic control also necessitate learning a generator function from the offline data to serve as the strategy or policy. In this case, applying deep generative models in offline policy learning exhibits great potential, and numerous studies have explored in this direction. However, this field still lacks a comprehensive review and so developments of different branches are relatively independent. In this paper, we provide the first systematic review on the applications of deep generative models for offline policy learning. In particular, we cover five mainstream deep generative models, including Variational Auto-Encoders, Generative Adversarial Networks, Normalizing Flows, Transformers, and Diffusion Models, and their applications in both offline reinforcement learning (offline RL) and imitation learning (IL). Offline RL and IL are two main branches of offline policy learning and are widely-adopted techniques for sequential decision-making. Notably, for each type of DGM-based offline policy learning, we distill its fundamental scheme, categorize related works based on the usage of the DGM, and sort out the development process of algorithms in that field. Subsequent to the main content, we provide in-depth discussions on deep generative models and offline policy learning as a summary, based on which we present our perspectives on future research directions. This work offers a hands-on reference for the research progress in deep generative models for offline policy learning, and aims to inspire improved DGM-based offline RL or IL algorithms. For convenience, we maintain a paper list on https://github.com/LucasCJYSDL/DGMs-for-Offline-Policy-Learning.
Variational Offline Multi-agent Skill Discovery
Chen, Jiayu, Ganguly, Bhargav, Lan, Tian, Aggarwal, Vaneet
Skills are effective temporal abstractions established for sequential decision making tasks, which enable efficient hierarchical learning for long-horizon tasks and facilitate multi-task learning through their transferability. Despite extensive research, research gaps remain in multi-agent scenarios, particularly for automatically extracting subgroup coordination patterns in a multi-agent task. In this case, we propose two novel auto-encoder schemes: VO-MASD-3D and VO-MASD-Hier, to simultaneously capture subgroup- and temporal-level abstractions and form multi-agent skills, which firstly solves the aforementioned challenge. An essential algorithm component of these schemes is a dynamic grouping function that can automatically detect latent subgroups based on agent interactions in a task. Notably, our method can be applied to offline multi-task data, and the discovered subgroup skills can be transferred across relevant tasks without retraining. Empirical evaluations on StarCraft tasks indicate that our approach significantly outperforms existing methods regarding applying skills in multi-agent reinforcement learning (MARL). Moreover, skills discovered using our method can effectively reduce the learning difficulty in MARL scenarios with delayed and sparse reward signals.
DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks
Thapaliya, Bishal, Miller, Robyn, Chen, Jiayu, Wang, Yu-Ping, Akbas, Esra, Sapkota, Ram, Ray, Bhaskar, Suresh, Pranav, Ghimire, Santosh, Calhoun, Vince, Liu, Jingyu
Resting-state functional magnetic resonance imaging (rs-fMRI) is a noninvasive technique pivotal for understanding human neural mechanisms of intricate cognitive processes. Most rs-fMRI studies compute a single static functional connectivity matrix across brain regions of interest, or dynamic functional connectivity matrices with a sliding window approach. These approaches are at risk of oversimplifying brain dynamics and lack proper consideration of the goal at hand. While deep learning has gained substantial popularity for modeling complex relational data, its application to uncovering the spatiotemporal dynamics of the brain is still limited. We propose a novel interpretable deep learning framework that learns goal-specific functional connectivity matrix directly from time series and employs a specialized graph neural network for the final classification. Our model, DSAM, leverages temporal causal convolutional networks to capture the temporal dynamics in both low- and high-level feature representations, a temporal attention unit to identify important time points, a self-attention unit to construct the goal-specific connectivity matrix, and a novel variant of graph neural network to capture the spatial dynamics for downstream classification. To validate our approach, we conducted experiments on the Human Connectome Project dataset with 1075 samples to build and interpret the model for the classification of sex group, and the Adolescent Brain Cognitive Development Dataset with 8520 samples for independent testing. Compared our proposed framework with other state-of-art models, results suggested this novel approach goes beyond the assumption of a fixed connectivity matrix and provides evidence of goal-specific brain connectivity patterns, which opens up the potential to gain deeper insights into how the human brain adapts its functional connectivity specific to the task at hand.
Global Convergence Guarantees for Federated Policy Gradient Methods with Adversaries
Ganesh, Swetha, Chen, Jiayu, Thoppe, Gugan, Aggarwal, Vaneet
Federated Reinforcement Learning (FRL) allows multiple agents to collaboratively build a decision making policy without sharing raw trajectories. However, if a small fraction of these agents are adversarial, it can lead to catastrophic results. We propose a policy gradient based approach that is robust to adversarial agents which can send arbitrary values to the server. Under this setting, our results form the first global convergence guarantees with general parametrization.
Reinforced Sequential Decision-Making for Sepsis Treatment: The POSNEGDM Framework with Mortality Classifier and Transformer
Tamboli, Dipesh, Chen, Jiayu, Jotheeswaran, Kiran Pranesh, Yu, Denny, Aggarwal, Vaneet
Sepsis, a life-threatening condition triggered by the body's exaggerated response to infection, demands urgent intervention to prevent severe complications. Existing machine learning methods for managing sepsis struggle in offline scenarios, exhibiting suboptimal performance with survival rates below 50%. This paper introduces the POSNEGDM -- ``Reinforcement Learning with Positive and Negative Demonstrations for Sequential Decision-Making" framework utilizing an innovative transformer-based model and a feedback reinforcer to replicate expert actions while considering individual patient characteristics. A mortality classifier with 96.7\% accuracy guides treatment decisions towards positive outcomes. The POSNEGDM framework significantly improves patient survival, saving 97.39% of patients, outperforming established machine learning algorithms (Decision Transformer and Behavioral Cloning) with survival rates of 33.4% and 43.5%, respectively. Additionally, ablation studies underscore the critical role of the transformer-based decision maker and the integration of a mortality classifier in enhancing overall survival rates. In summary, our proposed approach presents a promising avenue for enhancing sepsis treatment outcomes, contributing to improved patient care and reduced healthcare costs.