Chen, Hsin-Hsi
GADFA: Generator-Assisted Decision-Focused Approach for Opinion Expressing Timing Identification
Chen, Chung-Chi, Takamura, Hiroya, Kobayashi, Ichiro, Miyao, Yusuke, Chen, Hsin-Hsi
The advancement of text generation models has granted us the capability to produce coherent and convincing text on demand. Yet, in real-life circumstances, individuals do not continuously generate text or voice their opinions. For instance, consumers pen product reviews after weighing the merits and demerits of a product, and professional analysts issue reports following significant news releases. In essence, opinion expression is typically prompted by particular reasons or signals. Despite long-standing developments in opinion mining, the appropriate timing for expressing an opinion remains largely unexplored. To address this deficit, our study introduces an innovative task - the identification of news-triggered opinion expressing timing. We ground this task in the actions of professional stock analysts and develop a novel dataset for investigation. Our approach is decision-focused, leveraging text generation models to steer the classification model, thus enhancing overall performance. Our experimental findings demonstrate that the text generated by our model contributes fresh insights from various angles, effectively aiding in identifying the optimal timing for opinion expression.
Are Expert-Level Language Models Expert-Level Annotators?
Tseng, Yu-Min, Chen, Wei-Lin, Chen, Chung-Chi, Chen, Hsin-Hsi
Data annotation refers to the labeling or tagging of textual data with relevant information. A large body of works have reported positive results on leveraging LLMs as an alternative to human annotators. However, existing studies focus on classic NLP tasks, and the extent to which LLMs as data annotators perform in domains requiring expert knowledge remains underexplored. In this work, we investigate comprehensive approaches across three highly specialized domains and discuss practical suggestions from a cost-effectiveness perspective. To the best of our knowledge, we present the first systematic evaluation of LLMs as expert-level data annotators.
Co-Trained Retriever-Generator Framework for Question Generation in Earnings Calls
Juan, Yining, Chen, Chung-Chi, Huang, Hen-Hsen, Chen, Hsin-Hsi
In diverse professional environments, ranging from academic conferences to corporate earnings calls, the ability to anticipate audience questions stands paramount. Traditional methods, which rely on manual assessment of an audience's background, interests, and subject knowledge, often fall short - particularly when facing large or heterogeneous groups, leading to imprecision and inefficiency. While NLP has made strides in text-based question generation, its primary focus remains on academic settings, leaving the intricate challenges of professional domains, especially earnings call conferences, underserved. Addressing this gap, our paper pioneers the multi-question generation (MQG) task specifically designed for earnings call contexts. Our methodology involves an exhaustive collection of earnings call transcripts and a novel annotation technique to classify potential questions. Furthermore, we introduce a retriever-enhanced strategy to extract relevant information. With a core aim of generating a spectrum of potential questions that analysts might pose, we derive these directly from earnings call content. Empirical evaluations underscore our approach's edge, revealing notable excellence in the accuracy, consistency, and perplexity of the questions generated.
"Why" Has the Least Side Effect on Model Editing
Pan, Tsung-Hsuan, Chen, Chung-Chi, Huang, Hen-Hsen, Chen, Hsin-Hsi
Training large language models (LLMs) from scratch is an expensive endeavor, particularly as world knowledge continually evolves. To maintain relevance and accuracy of LLMs, model editing has emerged as a pivotal research area. While these methods hold promise, they can also produce unintended side effects. Their underlying factors and causes remain largely unexplored. This paper delves into a critical factor-question type-by categorizing model editing questions. Our findings reveal that the extent of performance degradation varies significantly across different question types, providing new insights for experimental design in knowledge editing. Furthermore, we investigate whether insights from smaller models can be extrapolated to larger models. Our results indicate discrepancies in findings between models of different sizes, suggesting that insights from smaller models may not necessarily apply to larger models. Additionally, we examine the impact of batch size on side effects, discovering that increasing the batch size can mitigate performance drops.
Pre-Finetuning with Impact Duration Awareness for Stock Movement Prediction
Chiu, Chr-Jr, Chen, Chung-Chi, Huang, Hen-Hsen, Chen, Hsin-Hsi
Understanding the duration of news events' impact on the stock market is crucial for effective time-series forecasting, yet this facet is largely overlooked in current research. This paper addresses this research gap by introducing a novel dataset, the Impact Duration Estimation Dataset (IDED), specifically designed to estimate impact duration based on investor opinions. Our research establishes that pre-finetuning language models with IDED can enhance performance in text-based stock movement predictions. In addition, we juxtapose our proposed pre-finetuning task with sentiment analysis pre-finetuning, further affirming the significance of learning impact duration. Our findings highlight the promise of this novel research direction in stock movement prediction, offering a new avenue for financial forecasting. We also provide the IDED and pre-finetuned language models under the CC BY-NC-SA 4.0 license for academic use, fostering further exploration in this field.
Enhancing Investment Opinion Ranking through Argument-Based Sentiment Analysis
Chen, Chung-Chi, Huang, Hen-Hsen, Chen, Hsin-Hsi, Takamura, Hiroya, Kobayashi, Ichiro, Miyao, Yusuke
In the era of rapid Internet and social media platform development, individuals readily share their viewpoints online. The overwhelming quantity of these posts renders comprehensive analysis impractical. This necessitates an efficient recommendation system to filter and present significant, relevant opinions. Our research introduces a dual-pronged argument mining technique to improve recommendation system effectiveness, considering both professional and amateur investor perspectives. Our first strategy involves using the discrepancy between target and closing prices as an opinion indicator. The second strategy applies argument mining principles to score investors' opinions, subsequently ranking them by these scores. Experimental results confirm the effectiveness of our approach, demonstrating its ability to identify opinions with higher profit potential. Beyond profitability, our research extends to risk analysis, examining the relationship between recommended opinions and investor behaviors. This offers a holistic view of potential outcomes following the adoption of these recommended opinions.
Unveiling Selection Biases: Exploring Order and Token Sensitivity in Large Language Models
Wei, Sheng-Lun, Wu, Cheng-Kuang, Huang, Hen-Hsen, Chen, Hsin-Hsi
In this paper, we investigate the phenomena of "selection biases" in Large Language Models (LLMs), focusing on problems where models are tasked with choosing the optimal option from an ordered sequence. We delve into biases related to option order and token usage, which significantly impact LLMs' decision-making processes. We also quantify the impact of these biases through an extensive empirical analysis across multiple models and tasks. Furthermore, we propose mitigation strategies to enhance model performance. Our key contributions are threefold: 1) Precisely quantifying the influence of option order and token on LLMs, 2) Developing strategies to mitigate the impact of token and order sensitivity to enhance robustness, and 3) Offering a detailed analysis of sensitivity across models and tasks, which informs the creation of more stable and reliable LLM applications for selection problems.
Fidelity-Enriched Contrastive Search: Reconciling the Faithfulness-Diversity Trade-Off in Text Generation
Chen, Wei-Lin, Wu, Cheng-Kuang, Chen, Hsin-Hsi, Chen, Chung-Chi
In this paper, we address the hallucination problem commonly found in natural language generation tasks. Language models often generate fluent and convincing content but can lack consistency with the provided source, resulting in potential inaccuracies. We propose a new decoding method called Fidelity-Enriched Contrastive Search (FECS), which augments the contrastive search framework with context-aware regularization terms. FECS promotes tokens that are semantically similar to the provided source while penalizing repetitiveness in the generated text. We demonstrate its effectiveness across two tasks prone to hallucination: abstractive summarization and dialogue generation. Results show that FECS consistently enhances faithfulness across various language model sizes while maintaining output diversity comparable to well-performing decoding algorithms.
ZARA: Improving Few-Shot Self-Rationalization for Small Language Models
Chen, Wei-Lin, Yen, An-Zi, Wu, Cheng-Kuang, Huang, Hen-Hsen, Chen, Hsin-Hsi
Language models (LMs) that jointly generate end-task answers as well as free-text rationales are known as self-rationalization models. Recent works demonstrate great performance gain for self-rationalization by few-shot prompting LMs with rationale-augmented exemplars. However, the ability to benefit from explanations only emerges with large-scale LMs, which have poor accessibility. In this work, we explore the less-studied setting of leveraging explanations for small LMs to improve few-shot self-rationalization. We first revisit the relationship between rationales and answers. Inspired by the implicit mental process of how human beings assess explanations, we present a novel approach, Zero-shot Augmentation of Rationale-Answer pairs (ZARA), to automatically construct pseudo-parallel data for self-training by reducing the problem of plausibility judgement to natural language inference. Experimental results show ZARA achieves SOTA performance on the FEB benchmark, for both the task accuracy and the explanation metric. In addition, we conduct human and quantitative evaluation validating ZARA's ability to automatically identify plausible and accurate rationale-answer pairs.
Self-ICL: Zero-Shot In-Context Learning with Self-Generated Demonstrations
Chen, Wei-Lin, Wu, Cheng-Kuang, Chen, Yun-Nung, Chen, Hsin-Hsi
Large language models (LLMs) have exhibited striking in-context learning (ICL) ability to adapt to target tasks with a few input-output demonstrations. For better ICL, different methods are proposed to select representative demonstrations from existing training corpora. However, such settings are not aligned with real-world practices, as end-users usually query LMs without access to demonstration pools. In this work, we introduce Self-ICL -- a simple framework which bootstraps LMs' intrinsic capabilities to perform zero-shot ICL. Given a test input, Self-ICL first prompts the model to generate pseudo-inputs. Next, the model predicts pseudo-labels for the pseudo-inputs via zero-shot prompting. Finally, we perform ICL for the test input with the pseudo-input-label pairs as demonstrations. Evaluation on 23 BIG-Bench Hard tasks shows Self-ICL outperforms zero-shot baselines on both average accuracy and head-to-head comparison. Moreover, with zero-shot chain-of-thought, Self-ICL achieves results comparable to using real demonstrations. Additionally, we conduct a range of analyses to validate Self-ICL's effectiveness and provide insights for its behaviors under different settings.