Chen, Howard
Continual Memorization of Factoids in Large Language Models
Chen, Howard, Geng, Jiayi, Bhaskar, Adithya, Friedman, Dan, Chen, Danqi
Large language models can absorb a massive amount of knowledge through pretraining, but pretraining is inefficient for acquiring long-tailed or specialized facts. Therefore, fine-tuning on specialized or new knowledge that reflects changes in the world has become popular, though it risks disrupting the model's original capabilities. We study this fragility in the context of continual memorization, where the model is trained on a small set of long-tail factoids (factual associations) and must retain these factoids after multiple stages of subsequent training on other datasets. Through extensive experiments, we show that LLMs suffer from forgetting across a wide range of subsequent tasks, and simple replay techniques do not fully prevent forgetting, especially when the factoid datasets are trained in the later stages. We posit that there are two ways to alleviate forgetting: 1) protect the memorization process as the model learns the factoids, or 2) reduce interference from training in later stages. With this insight, we develop an effective mitigation strategy: REMIX (Random and Generic Data Mixing). REMIX prevents forgetting by mixing generic data sampled from pretraining corpora or even randomly generated word sequences during each stage, despite being unrelated to the memorized factoids in the first stage. REMIX can recover performance from severe forgetting, often outperforming replay-based methods that have access to the factoids from the first stage. We then analyze how REMIX alters the learning process and find that successful forgetting prevention is associated with a pattern: the model stores factoids in earlier layers than usual and diversifies the set of layers that store these factoids. The efficacy of REMIX invites further investigation into the underlying dynamics of memorization and forgetting, opening exciting possibilities for future research.
Language Models as Science Tutors
Chevalier, Alexis, Geng, Jiayi, Wettig, Alexander, Chen, Howard, Mizera, Sebastian, Annala, Toni, Aragon, Max Jameson, Fanlo, Arturo Rodríguez, Frieder, Simon, Machado, Simon, Prabhakar, Akshara, Thieu, Ellie, Wang, Jiachen T., Wang, Zirui, Wu, Xindi, Xia, Mengzhou, Jia, Wenhan, Yu, Jiatong, Zhu, Jun-Jie, Ren, Zhiyong Jason, Arora, Sanjeev, Chen, Danqi
NLP has recently made exciting progress toward training language models (LMs) with strong scientific problem-solving skills. However, model development has not focused on real-life use-cases of LMs for science, including applications in education that require processing long scientific documents. To address this, we introduce TutorEval and TutorChat. TutorEval is a diverse question-answering benchmark consisting of questions about long chapters from STEM textbooks, written by experts. TutorEval helps measure real-life usability of LMs as scientific assistants, and it is the first benchmark combining long contexts, free-form generation, and multi-disciplinary scientific knowledge. Moreover, we show that fine-tuning base models with existing dialogue datasets leads to poor performance on TutorEval. Therefore, we create TutorChat, a dataset of 80,000 long synthetic dialogues about textbooks. We use TutorChat to fine-tune Llemma models with 7B and 34B parameters. These LM tutors specialized in math have a 32K-token context window, and they excel at TutorEval while performing strongly on GSM8K and MATH. Our datasets build on open-source materials, and we release our models, data, and evaluations.
C-STS: Conditional Semantic Textual Similarity
Deshpande, Ameet, Jimenez, Carlos E., Chen, Howard, Murahari, Vishvak, Graf, Victoria, Rajpurohit, Tanmay, Kalyan, Ashwin, Chen, Danqi, Narasimhan, Karthik
Semantic textual similarity (STS), a cornerstone task in NLP, measures the degree of similarity between a pair of sentences, and has broad application in fields such as information retrieval and natural language understanding. However, sentence similarity can be inherently ambiguous, depending on the specific aspect of interest. We resolve this ambiguity by proposing a novel task called Conditional STS (C-STS) which measures sentences' similarity conditioned on an feature described in natural language (hereon, condition). As an example, the similarity between the sentences "The NBA player shoots a three-pointer." and "A man throws a tennis ball into the air to serve." is higher for the condition "The motion of the ball" (both upward) and lower for "The size of the ball" (one large and one small). C-STS's advantages are two-fold: (1) it reduces the subjectivity and ambiguity of STS and (2) enables fine-grained language model evaluation through diverse natural language conditions. We put several state-of-the-art models to the test, and even those performing well on STS (e.g. SimCSE, Flan-T5, and GPT-4) find C-STS challenging; all with Spearman correlation scores below 50. To encourage a more comprehensive evaluation of semantic similarity and natural language understanding, we make nearly 19K C-STS examples and code available for others to train and test their models.
Walking Down the Memory Maze: Beyond Context Limit through Interactive Reading
Chen, Howard, Pasunuru, Ramakanth, Weston, Jason, Celikyilmaz, Asli
Large language models (LLMs) have advanced in large strides due to the effectiveness of the self-attention mechanism that processes and compares all tokens at once. However, this mechanism comes with a fundamental issue -- the predetermined context window is bound to be limited. Despite attempts to extend the context window through methods like extrapolating the positional embedding, using recurrence, or selectively retrieving essential parts of the long sequence, long-text understanding continues to be a challenge. We propose an alternative approach which instead treats the LLM as an interactive agent, allowing it to decide how to read the text via iterative prompting. We introduce MemWalker, a method that first processes the long context into a tree of summary nodes. Upon receiving a query, the model navigates this tree in search of relevant information, and responds once it gathers sufficient information. On long-text question answering tasks our method outperforms baseline approaches that use long context windows, recurrence, and retrieval. We show that, beyond effective reading, MemWalker enhances explainability by highlighting the reasoning steps as it interactively reads the text; pinpointing the relevant text segments related to the query.
COLLIE: Systematic Construction of Constrained Text Generation Tasks
Yao, Shunyu, Chen, Howard, Hanjie, Austin W., Yang, Runzhe, Narasimhan, Karthik
Text generation under constraints have seen increasing interests in natural language processing, especially with the rapidly improving capabilities of large language models. However, existing benchmarks for constrained generation usually focus on fixed constraint types (e.g.,generate a sentence containing certain words) that have proved to be easy for state-of-the-art models like GPT-4. We present COLLIE, a grammar-based framework that allows the specification of rich, compositional constraints with diverse generation levels (word, sentence, paragraph, passage) and modeling challenges (e.g.,language understanding, logical reasoning, counting, semantic planning). We also develop tools for automatic extraction of task instances given a constraint structure and a raw text corpus. Using COLLIE, we compile the COLLIE-v1 dataset with 2080 instances comprising 13 constraint structures. We perform systematic experiments across five state-of-the-art instruction-tuned language models and analyze their performances to reveal shortcomings. COLLIE is designed to be extensible and lightweight, and we hope the community finds it useful to develop more complex constraints and evaluations in the future.
What In-Context Learning "Learns" In-Context: Disentangling Task Recognition and Task Learning
Pan, Jane, Gao, Tianyu, Chen, Howard, Chen, Danqi
Large language models (LLMs) exploit in-context learning (ICL) to solve tasks with only a few demonstrations, but its mechanisms are not yet well-understood. Some works suggest that LLMs only recall already learned concepts from pre-training, while others hint that ICL performs implicit learning over demonstrations. We characterize two ways through which ICL leverages demonstrations. Task recognition (TR) captures the extent to which LLMs can recognize a task through demonstrations -- even without ground-truth labels -- and apply their pre-trained priors, whereas task learning (TL) is the ability to capture new input-label mappings unseen in pre-training. Using a wide range of classification datasets and three LLM families (GPT-3, LLaMA and OPT), we design controlled experiments to disentangle the roles of TR and TL in ICL. We show that (1) models can achieve non-trivial performance with only TR, and TR does not further improve with larger models or more demonstrations; (2) LLMs acquire TL as the model scales, and TL's performance consistently improves with more demonstrations in context. Our findings unravel two different forces behind ICL and we advocate for discriminating them in future ICL research due to their distinct nature.
WebShop: Towards Scalable Real-World Web Interaction with Grounded Language Agents
Yao, Shunyu, Chen, Howard, Yang, John, Narasimhan, Karthik
Existing benchmarks for grounding language in interactive environments either lack real-world linguistic elements, or prove difficult to scale up due to substantial human involvement in the collection of data or feedback signals. To bridge this gap, we develop WebShop -- a simulated e-commerce website environment with $1.18$ million real-world products and $12,087$ crowd-sourced text instructions. Given a text instruction specifying a product requirement, an agent needs to navigate multiple types of webpages and issue diverse actions to find, customize, and purchase an item. WebShop provides several challenges for language grounding including understanding compositional instructions, query (re-)formulation, comprehending and acting on noisy text in webpages, and performing strategic exploration. We collect over $1,600$ human demonstrations for the task, and train and evaluate a diverse range of agents using reinforcement learning, imitation learning, and pre-trained image and language models. Our best model achieves a task success rate of $29\%$, which outperforms rule-based heuristics ($9.6\%$) but is far lower than human expert performance ($59\%$). We also analyze agent and human trajectories and ablate various model components to provide insights for developing future agents with stronger language understanding and decision making abilities. Finally, we show that agents trained on WebShop exhibit non-trivial sim-to-real transfer when evaluated on amazon.com and ebay.com, indicating the potential value of WebShop in developing practical web-based agents that can operate in the wild.
Controllable Text Generation with Language Constraints
Chen, Howard, Li, Huihan, Chen, Danqi, Narasimhan, Karthik
We consider the task of text generation in language models with constraints specified in natural language. To this end, we first create a challenging benchmark Cognac that provides as input to the model a topic with example text, along with a constraint on text to be avoided. Unlike prior work, our benchmark contains knowledge-intensive constraints sourced from databases like Wordnet and Wikidata, which allows for straightforward evaluation while striking a balance between broad attribute-level and narrow lexical-level controls. We find that even state-of-the-art language models like GPT-3 fail often on this task, and propose a solution to leverage a language model's own internal knowledge to guide generation. Our method, called CognacGen, first queries the language model to generate guidance terms for a specified topic or constraint, and uses the guidance to modify the model's token generation probabilities. We propose three forms of guidance (binary verifier, top-k tokens, textual example), and employ prefix-tuning approaches to distill the guidance to tackle diverse natural language constraints. Through extensive empirical evaluations, we demonstrate that CognacGen can successfully generalize to unseen instructions and outperform competitive baselines in generating constraint conforming text.
Touchdown: Natural Language Navigation and Spatial Reasoning in Visual Street Environments
Chen, Howard, Suhr, Alane, Misra, Dipendra, Snavely, Noah, Artzi, Yoav
We study the problem of jointly reasoning about language and vision through a navigation and spatial reasoning task. We introduce the Touchdown task and dataset, where an agent must first follow navigation instructions in a real-life visual urban environment to a goal position, and then identify in the observed image a location described in natural language to find a hidden object. The data contains 9,326 examples of English instructions and spatial descriptions paired with demonstrations. We perform qualitative linguistic analysis, and show that the data displays richer use of spatial reasoning compared to related resources. Empirical analysis shows the data presents an open challenge to existing methods.