Chen, Haodong
A Survey on Event-driven 3D Reconstruction: Development under Different Categories
Xu, Chuanzhi, Zhou, Haoxian, Chen, Haodong, Chung, Vera, Qu, Qiang
--Event cameras have gained increasing attention for 3D reconstruction due to their high temporal resolution, low latency, and high dynamic range. They capture per-pixel brightness changes asynchronously, allowing accurate reconstruction under fast motion and challenging lighting conditions. In this survey, we provide a comprehensive review of event-driven 3D reconstruction methods, including stereo, monocular, and multimodal systems. We further categorize recent developments based on geometric, learning-based, and hybrid approaches. Emerging trends, such as neural radiance fields and 3D Gaussian splatting with event data, are also covered. The related works are structured chronologically to illustrate the innovations and progression within the field. T o support future research, we also highlight key research gaps and future research directions in dataset, experiment, evaluation, event representation, etc. Event cameras, also known as neuromorphic cameras, silicon retina, or dynamic vision sensors, are bio-inspired sensors that respond asynchronously to changes in brightness.
SeFAR: Semi-supervised Fine-grained Action Recognition with Temporal Perturbation and Learning Stabilization
Huang, Yongle, Chen, Haodong, Xu, Zhenbang, Jia, Zihan, Sun, Haozhou, Shao, Dian
Human action understanding is crucial for the advancement of multimodal systems. While recent developments, driven by powerful large language models (LLMs), aim to be general enough to cover a wide range of categories, they often overlook the need for more specific capabilities. In this work, we address the more challenging task of Fine-grained Action Recognition (FAR), which focuses on detailed semantic labels within shorter temporal duration (e.g., "salto backward tucked with 1 turn"). Given the high costs of annotating fine-grained labels and the substantial data needed for fine-tuning LLMs, we propose to adopt semi-supervised learning (SSL). Our framework, SeFAR, incorporates several innovative designs to tackle these challenges. Specifically, to capture sufficient visual details, we construct Dual-level temporal elements as more effective representations, based on which we design a new strong augmentation strategy for the Teacher-Student learning paradigm through involving moderate temporal perturbation. Furthermore, to handle the high uncertainty within the teacher model's predictions for FAR, we propose the Adaptive Regulation to stabilize the learning process. Experiments show that SeFAR achieves state-of-the-art performance on two FAR datasets, FineGym and FineDiving, across various data scopes. It also outperforms other semi-supervised methods on two classical coarse-grained datasets, UCF101 and HMDB51. Further analysis and ablation studies validate the effectiveness of our designs. Additionally, we show that the features extracted by our SeFAR could largely promote the ability of multimodal foundation models to understand fine-grained and domain-specific semantics.
Towards End-to-End Neuromorphic Voxel-based 3D Object Reconstruction Without Physical Priors
Xu, Chuanzhi, Chen, Langyi, Qu, Vincent, Chen, Haodong, Chung, Vera
Neuromorphic cameras, also known as event cameras, are asynchronous brightness-change sensors that can capture extremely fast motion without suffering from motion blur, making them particularly promising for 3D reconstruction in extreme environments. However, existing research on 3D reconstruction using monocular neuromorphic cameras is limited, and most of the methods rely on estimating physical priors and employ complex multi-step pipelines. In this work, we propose an end-to-end method for dense voxel 3D reconstruction using neuromorphic cameras that eliminates the need to estimate physical priors. Our method incorporates a novel event representation to enhance edge features, enabling the proposed feature-enhancement model to learn more effectively. Additionally, we introduced Optimal Binarization Threshold Selection Principle as a guideline for future related work, using the optimal reconstruction results achieved with threshold optimization as the benchmark. Our method achieves a 54.6% improvement in reconstruction accuracy compared to the baseline method.
OmniCreator: Self-Supervised Unified Generation with Universal Editing
Chen, Haodong, Wang, Lan, Yang, Harry, Lim, Ser-Nam
We introduce OmniCreator, a novel framework that can conduct text-prompted unified (image+video) generation as well as editing all in one place. OmniCreator acquires generative and universal editing capabilities in a self-supervised manner, taking original text-video pairs as conditions while utilizing the same video as a denoising target to learn the semantic correspondence between video and text. During inference, when presented with a text prompt and a video, OmniCreator is capable of generating a target that is faithful to both, achieving a universal editing effect that is unconstrained as opposed to existing editing work that primarily focuses on certain editing types or relies on additional controls (e.g., structural conditions, attention features, or DDIM inversion). On the other hand, when presented with a text prompt only, OmniCreator becomes generative, producing high-quality video as a result of the semantic correspondence learned. Importantly, we found that the same capabilities extend to images as is, making OmniCreator a truly unified framework. Further, due to the lack of existing generative video editing benchmarks, we introduce the OmniBench-99 dataset, designed to evaluate the performance of generative video editing models comprehensively. Extensive experiments demonstrate that OmniCreator exhibits substantial superiority over all other models.
When Urban Region Profiling Meets Large Language Models
Yan, Yibo, Wen, Haomin, Zhong, Siru, Chen, Wei, Chen, Haodong, Wen, Qingsong, Zimmermann, Roger, Liang, Yuxuan
Urban region profiling from web-sourced data is of utmost importance for urban planning and sustainable development. We are witnessing a rising trend of LLMs for various fields, especially dealing with multi-modal data research such as vision-language learning, where the text modality serves as a supplement information for the image. Since textual modality has never been introduced into modality combinations in urban region profiling, we aim to answer two fundamental questions in this paper: i) Can textual modality enhance urban region profiling? ii) and if so, in what ways and with regard to which aspects? To answer the questions, we leverage the power of Large Language Models (LLMs) and introduce the first-ever LLM-enhanced framework that integrates the knowledge of textual modality into urban imagery profiling, named LLM-enhanced Urban Region Profiling with Contrastive Language-Image Pretraining (UrbanCLIP). Specifically, it first generates a detailed textual description for each satellite image by an open-source Image-to-Text LLM. Then, the model is trained on the image-text pairs, seamlessly unifying natural language supervision for urban visual representation learning, jointly with contrastive loss and language modeling loss. Results on predicting three urban indicators in four major Chinese metropolises demonstrate its superior performance, with an average improvement of 6.1% on R^2 compared to the state-of-the-art methods. Our code and the image-language dataset will be released upon paper notification.
Dense Voxel 3D Reconstruction Using a Monocular Event Camera
Chen, Haodong, Chung, Vera, Tan, Li, Chen, Xiaoming
Event cameras are sensors inspired by biological systems that specialize in capturing changes in brightness. These emerging cameras offer many advantages over conventional frame-based cameras, including high dynamic range, high frame rates, and extremely low power consumption. Due to these advantages, event cameras have increasingly been adapted in various fields, such as frame interpolation, semantic segmentation, odometry, and SLAM. However, their application in 3D reconstruction for VR applications is underexplored. Previous methods in this field mainly focused on 3D reconstruction through depth map estimation. Methods that produce dense 3D reconstruction generally require multiple cameras, while methods that utilize a single event camera can only produce a semi-dense result. Other single-camera methods that can produce dense 3D reconstruction rely on creating a pipeline that either incorporates the aforementioned methods or other existing Structure from Motion (SfM) or Multi-view Stereo (MVS) methods. In this paper, we propose a novel approach for solving dense 3D reconstruction using only a single event camera. To the best of our knowledge, our work is the first attempt in this regard. Our preliminary results demonstrate that the proposed method can produce visually distinguishable dense 3D reconstructions directly without requiring pipelines like those used by existing methods. Additionally, we have created a synthetic dataset with $39,739$ object scans using an event camera simulator. This dataset will help accelerate other relevant research in this field.