Goto

Collaborating Authors

 Chen, Hanning


Hyperdimensional Intelligent Sensing for Efficient Real-Time Audio Processing on Extreme Edge

arXiv.org Artificial Intelligence

The escalating challenges of managing vast sensor-generated data, particularly in audio applications, necessitate innovative solutions. Current systems face significant computational and storage demands, especially in real-time applications like gunshot detection systems (GSDS), and the proliferation of edge sensors exacerbates these issues. This paper proposes a groundbreaking approach with a near-sensor model tailored for intelligent audio-sensing frameworks. Utilizing a Fast Fourier Transform (FFT) module, convolutional neural network (CNN) layers, and HyperDimensional Computing (HDC), our model excels in low-energy, rapid inference, and online learning. It is highly adaptable for efficient ASIC design implementation, offering superior energy efficiency compared to conventional embedded CPUs or GPUs, and is compatible with the trend of shrinking microphone sensor sizes. Comprehensive evaluations at both software and hardware levels underscore the model's efficacy. Software assessments through detailed ROC curve analysis revealed a delicate balance between energy conservation and quality loss, achieving up to 82.1% energy savings with only 1.39% quality loss. Hardware evaluations highlight the model's commendable energy efficiency when implemented via ASIC design, especially with the Google Edge TPU, showcasing its superiority over prevalent embedded CPUs and GPUs.


Tell Me What to Track: Infusing Robust Language Guidance for Enhanced Referring Multi-Object Tracking

arXiv.org Artificial Intelligence

Referring multi-object tracking (RMOT) is an emerging cross-modal task that aims to localize an arbitrary number of targets based on a language expression and continuously track them in a video. This intricate task involves reasoning on multi-modal data and precise target localization with temporal association. However, prior studies overlook the imbalanced data distribution between newborn targets and existing targets due to the nature of the task. In addition, they only indirectly fuse multi-modal features, struggling to deliver clear guidance on newborn target detection. To solve the above issues, we conduct a collaborative matching strategy to alleviate the impact of the imbalance, boosting the ability to detect newborn targets while maintaining tracking performance. In the encoder, we integrate and enhance the cross-modal and multi-scale fusion, overcoming the bottlenecks in previous work, where limited multi-modal information is shared and interacted between feature maps. In the decoder, we also develop a referring-infused adaptation that provides explicit referring guidance through the query tokens. The experiments showcase the superior performance of our model (+3.42%) compared to prior works, demonstrating the effectiveness of our designs.


HDReason: Algorithm-Hardware Codesign for Hyperdimensional Knowledge Graph Reasoning

arXiv.org Artificial Intelligence

In recent times, a plethora of hardware accelerators have been put forth for graph learning applications such as vertex classification and graph classification. However, previous works have paid little attention to Knowledge Graph Completion (KGC), a task that is well-known for its significantly higher algorithm complexity. The state-of-the-art KGC solutions based on graph convolution neural network (GCN) involve extensive vertex/relation embedding updates and complicated score functions, which are inherently cumbersome for acceleration. As a result, existing accelerator designs are no longer optimal, and a novel algorithm-hardware co-design for KG reasoning is needed. Recently, brain-inspired HyperDimensional Computing (HDC) has been introduced as a promising solution for lightweight machine learning, particularly for graph learning applications. In this paper, we leverage HDC for an intrinsically more efficient and acceleration-friendly KGC algorithm. We also co-design an acceleration framework named HDReason targeting FPGA platforms. On the algorithm level, HDReason achieves a balance between high reasoning accuracy, strong model interpretability, and less computation complexity. In terms of architecture, HDReason offers reconfigurability, high training throughput, and low energy consumption. When compared with NVIDIA RTX 4090 GPU, the proposed accelerator achieves an average 10.6x speedup and 65x energy efficiency improvement. When conducting cross-models and cross-platforms comparison, HDReason yields an average 4.2x higher performance and 3.4x better energy efficiency with similar accuracy versus the state-of-the-art FPGA-based GCN training platform.


A Plug-in Tiny AI Module for Intelligent and Selective Sensor Data Transmission

arXiv.org Artificial Intelligence

Applications in the Internet of Things (IoT) utilize machine learning to analyze sensor-generated data. However, a major challenge lies in the lack of targeted intelligence in current sensing systems, leading to vast data generation and increased computational and communication costs. To address this challenge, we propose a novel sensing module to equip sensing frameworks with intelligent data transmission capabilities by integrating a highly efficient machine learning model placed near the sensor. This model provides prompt feedback for the sensing system to transmit only valuable data while discarding irrelevant information by regulating the frequency of data transmission. The near-sensor model is quantized and optimized for real-time sensor control. To enhance the framework's performance, the training process is customized and a "lazy" sensor deactivation strategy utilizing temporal information is introduced. The suggested method is orthogonal to other IoT frameworks and can be considered as a plugin for selective data transmission. The framework is implemented, encompassing both software and hardware components. The experiments demonstrate that the framework utilizing the suggested module achieves over 85% system efficiency in terms of energy consumption and storage, with negligible impact on performance. This methodology has the potential to significantly reduce data output from sensors, benefiting a wide range of IoT applications.


HyperSense: Accelerating Hyper-Dimensional Computing for Intelligent Sensor Data Processing

arXiv.org Artificial Intelligence

Introducing HyperSense, our co-designed hardware and software system efficiently controls Analog-to-Digital Converter (ADC) modules' data generation rate based on object presence predictions in sensor data. Addressing challenges posed by escalating sensor quantities and data rates, HyperSense reduces redundant digital data using energy-efficient low-precision ADC, diminishing machine learning system costs. Leveraging neurally-inspired HyperDimensional Computing (HDC), HyperSense analyzes real-time raw low-precision sensor data, offering advantages in handling noise, memory-centricity, and real-time learning. Our proposed HyperSense model combines high-performance software for object detection with real-time hardware prediction, introducing the novel concept of Intelligent Sensor Control. Comprehensive software and hardware evaluations demonstrate our solution's superior performance, evidenced by the highest Area Under the Curve (AUC) and sharpest Receiver Operating Characteristic (ROC) curve among lightweight models. Hardware-wise, our FPGA-based domain-specific accelerator tailored for HyperSense achieves a 5.6x speedup compared to YOLOv4 on NVIDIA Jetson Orin while showing up to 92.1% energy saving compared to the conventional system. These results underscore HyperSense's effectiveness and efficiency, positioning it as a promising solution for intelligent sensing and real-time data processing across diverse applications.


Towards Efficient Hyperdimensional Computing Using Photonics

arXiv.org Artificial Intelligence

Over the past few years, silicon photonics-based computing has emerged as a promising alternative to CMOS-based computing for Deep Neural Networks (DNN). Unfortunately, the non-linear operations and the high-precision requirements of DNNs make it extremely challenging to design efficient silicon photonics-based systems for DNN inference and training. Hyperdimensional Computing (HDC) is an emerging, brain-inspired machine learning technique that enjoys several advantages over existing DNNs, including being lightweight, requiring low-precision operands, and being robust to noise introduced by the nonidealities in the hardware. For HDC, computing in-memory (CiM) approaches have been widely used, as CiM reduces the data transfer cost if the operands can fit into the memory. However, inefficient multi-bit operations, high write latency, and low endurance make CiM ill-suited for HDC. On the other hand, the existing electro-photonic DNN accelerators are inefficient for HDC because they are specifically optimized for matrix multiplication in DNNs and consume a lot of power with high-precision data converters. In this paper, we argue that photonic computing and HDC complement each other better than photonic computing and DNNs, or CiM and HDC. We propose PhotoHDC, the first-ever electro-photonic accelerator for HDC training and inference, supporting the basic, record-based, and graph encoding schemes. Evaluating with popular datasets, we show that our accelerator can achieve two to five orders of magnitude lower EDP than the state-of-the-art electro-photonic DNN accelerators for implementing HDC training and inference. PhotoHDC also achieves four orders of magnitude lower energy-delay product than CiM-based accelerators for both HDC training and inference.


Ethosight: A Reasoning-Guided Iterative Learning System for Nuanced Perception based on Joint-Embedding & Contextual Label Affinity

arXiv.org Artificial Intelligence

Traditional computer vision models often necessitate extensive data acquisition, annotation, and validation. These models frequently struggle in real-world applications, resulting in high false positive and negative rates, and exhibit poor adaptability to new scenarios, often requiring costly retraining. To address these issues, we present Ethosight, a flexible and adaptable zero-shot video analytics system. Ethosight begins from a clean slate based on user-defined video analytics, specified through natural language or keywords, and leverages joint embedding models and reasoning mechanisms informed by ontologies such as WordNet and ConceptNet. Ethosight operates effectively on low-cost edge devices and supports enhanced runtime adaptation, thereby offering a new approach to continuous learning without catastrophic forgetting. We provide empirical validation of Ethosight's promising effectiveness across diverse and complex use cases, while highlighting areas for further improvement. A significant contribution of this work is the release of all source code and datasets to enable full reproducibility and to foster further innovation in both the research and commercial domains.


Late Breaking Results: Scalable and Efficient Hyperdimensional Computing for Network Intrusion Detection

arXiv.org Artificial Intelligence

Cybersecurity has emerged as a critical challenge for the industry. With the large complexity of the security landscape, sophisticated and costly deep learning models often fail to provide timely detection of cyber threats on edge devices. Brain-inspired hyperdimensional computing (HDC) has been introduced as a promising solution to address this issue. However, existing HDC approaches use static encoders and require very high dimensionality and hundreds of training iterations to achieve reasonable accuracy. This results in a serious loss of learning efficiency and causes huge latency for detecting attacks. In this paper, we propose CyberHD, an innovative HDC learning framework that identifies and regenerates insignificant dimensions to capture complicated patterns of cyber threats with remarkably lower dimensionality. Additionally, the holographic distribution of patterns in high dimensional space provides CyberHD with notably high robustness against hardware errors.