Goto

Collaborating Authors

 Chen, Guojin


PACE: Pacing Operator Learning to Accurate Optical Field Simulation for Complicated Photonic Devices

arXiv.org Artificial Intelligence

Electromagnetic field simulation is central to designing, optimizing, and validating photonic devices and circuits. However, costly computation associated with numerical simulation poses a significant bottleneck, hindering scalability and turnaround time in the photonic circuit design process. Neural operators offer a promising alternative, but existing SOTA approaches, NeurOLight, struggle with predicting high-fidelity fields for real-world complicated photonic devices, with the best reported 0.38 normalized mean absolute error in NeurOLight. The inter-plays of highly complex light-matter interaction, e.g., scattering and resonance, sensitivity to local structure details, non-uniform learning complexity for full-domain simulation, and rich frequency information, contribute to the failure of existing neural PDE solvers. In this work, we boost the prediction fidelity to an unprecedented level for simulating complex photonic devices with a novel operator design driven by the above challenges. We propose a novel cross-axis factorized PACE operator with a strong long-distance modeling capacity to connect the full-domain complex field pattern with local device structures. Inspired by human learning, we further divide and conquer the simulation task for extremely hard cases into two progressively easy tasks, with a first-stage model learning an initial solution refined by a second model. On various complicated photonic device benchmarks, we demonstrate one sole PACE model is capable of achieving 73% lower error with 50% fewer parameters compared with various recent ML for PDE solvers. The two-stage setup further advances high-fidelity simulation for even more intricate cases. In terms of runtime, PACE demonstrates 154-577x and 11.8-12x simulation speedup over numerical solver using scipy or highly-optimized pardiso solver, respectively. We open sourced the code and dataset.


LLM-Enhanced Bayesian Optimization for Efficient Analog Layout Constraint Generation

arXiv.org Artificial Intelligence

Analog layout synthesis faces significant challenges due to its dependence on manual processes, considerable time requirements, and performance instability. Current Bayesian Optimization (BO)-based techniques for analog layout synthesis, despite their potential for automation, suffer from slow convergence and extensive data needs, limiting their practical application. This paper presents the \texttt{LLANA} framework, a novel approach that leverages Large Language Models (LLMs) to enhance BO by exploiting the few-shot learning abilities of LLMs for more efficient generation of analog design-dependent parameter constraints. Experimental results demonstrate that \texttt{LLANA} not only achieves performance comparable to state-of-the-art (SOTA) BO methods but also enables a more effective exploration of the analog circuit design space, thanks to LLM's superior contextual understanding and learning efficiency. The code is available at https://github.com/dekura/LLANA.


AnalogCoder: Analog Circuit Design via Training-Free Code Generation

arXiv.org Artificial Intelligence

Analog circuit design is a significant task in modern chip technology, focusing on the selection of component types, connectivity, and parameters to ensure proper circuit functionality. Despite advances made by Large Language Models (LLMs) in digital circuit design, the complexity and scarcity of data in analog circuitry pose significant challenges. To mitigate these issues, we introduce AnalogCoder, the first training-free LLM agent for designing analog circuits through Python code generation. Firstly, AnalogCoder incorporates a feedback-enhanced flow with tailored domain-specific prompts, enabling the automated and self-correcting design of analog circuits with a high success rate. Secondly, it proposes a circuit tool library to archive successful designs as reusable modular sub-circuits, simplifying composite circuit creation. Thirdly, extensive experiments on a benchmark designed to cover a wide range of analog circuit tasks show that AnalogCoder outperforms other LLM-based methods. It has successfully designed 20 circuits, 5 more than standard GPT-4o. We believe AnalogCoder can significantly improve the labor-intensive chip design process, enabling non-experts to design analog circuits efficiently.


Physics-Informed Optical Kernel Regression Using Complex-valued Neural Fields

arXiv.org Artificial Intelligence

Lithography is fundamental to integrated circuit fabrication, necessitating large computation overhead. The advancement of machine learning (ML)-based lithography models alleviates the trade-offs between manufacturing process expense and capability. However, all previous methods regard the lithography system as an image-to-image black box mapping, utilizing network parameters to learn by rote mappings from massive mask-to-aerial or mask-to-resist image pairs, resulting in poor generalization capability. In this paper, we propose a new ML-based paradigm disassembling the rigorous lithographic model into non-parametric mask operations and learned optical kernels containing determinant source, pupil, and lithography information. By optimizing complex-valued neural fields to perform optical kernel regression from coordinates, our method can accurately restore lithography system using a small-scale training dataset with fewer parameters, demonstrating superior generalization capability as well. Experiments show that our framework can use 31% of parameters while achieving 69$\times$ smaller mean squared error with 1.3$\times$ higher throughput than the state-of-the-art.


GPU-accelerated Matrix Cover Algorithm for Multiple Patterning Layout Decomposition

arXiv.org Artificial Intelligence

Multiple patterning lithography (MPL) is regarded as one of the most promising ways of overcoming the resolution limitations of conventional optical lithography due to the delay of next-generation lithography technology. As the feature size continues to decrease, layout decomposition for multiple patterning lithography (MPLD) technology is becoming increasingly crucial for improving the manufacturability in advanced nodes. The decomposition process refers to assigning the layout features to different mask layers according to the design rules and density requirements. When the number of masks $k \geq 3$, the MPLD problems are NP-hard and thus may suffer from runtime overhead for practical designs. However, the number of layout patterns is increasing exponentially in industrial layouts, which hinders the runtime performance of MPLD models. In this research, we substitute the CPU's dance link data structure with parallel GPU matrix operations to accelerate the solution for exact cover-based MPLD algorithms. Experimental results demonstrate that our system is capable of full-scale, lightning-fast layout decomposition, which can achieve more than 10$\times$ speed-up without quality degradation compared to state-of-the-art layout decomposition methods.


DevelSet: Deep Neural Level Set for Instant Mask Optimization

arXiv.org Artificial Intelligence

With the feature size continuously shrinking in advanced technology nodes, mask optimization is increasingly crucial in the conventional design flow, accompanied by an explosive growth in prohibitive computational overhead in optical proximity correction (OPC) methods. Recently, inverse lithography technique (ILT) has drawn significant attention and is becoming prevalent in emerging OPC solutions. However, ILT methods are either time-consuming or in weak performance of mask printability and manufacturability. In this paper, we present DevelSet, a GPU and deep neural network (DNN) accelerated level set OPC framework for metal layer. We first improve the conventional level set-based ILT algorithm by introducing the curvature term to reduce mask complexity and applying GPU acceleration to overcome computational bottlenecks. To further enhance printability and fast iterative convergence, we propose a novel deep neural network delicately designed with level set intrinsic principles to facilitate the joint optimization of DNN and GPU accelerated level set optimizer. Experimental results show that DevelSet framework surpasses the state-of-the-art methods in printability and boost the runtime performance achieving instant level (around 1 second).