Chen, Guo
Eagle 2: Building Post-Training Data Strategies from Scratch for Frontier Vision-Language Models
Li, Zhiqi, Chen, Guo, Liu, Shilong, Wang, Shihao, VS, Vibashan, Ji, Yishen, Lan, Shiyi, Zhang, Hao, Zhao, Yilin, Radhakrishnan, Subhashree, Chang, Nadine, Sapra, Karan, Deshmukh, Amala Sanjay, Rintamaki, Tuomas, Le, Matthieu, Karmanov, Ilia, Voegtle, Lukas, Fischer, Philipp, Huang, De-An, Roman, Timo, Lu, Tong, Alvarez, Jose M., Catanzaro, Bryan, Kautz, Jan, Tao, Andrew, Liu, Guilin, Yu, Zhiding
Recently, promising progress has been made by open-source vision-language models (VLMs) in bringing their capabilities closer to those of proprietary frontier models. However, most open-source models only publish their final model weights, leaving the critical details of data strategies and implementation largely opaque. In this work, we address VLM post-training from a data-centric perspective, showing the key role of data strategy in developing frontier VLMs. By studying and building our post-training data strategy from scratch, we share detailed insights into the development processes, aiming to benefit the development of competitive models for the open-source community. Our introduced data strategy, together with training recipes and model design, leads to a family of performant VLMs named Eagle2. Specifically, Eagle2-9B achieves state-of-the-art results across various multimodal benchmarks, matching certain competitive models with up to 70B parameters.
EF-LLM: Energy Forecasting LLM with AI-assisted Automation, Enhanced Sparse Prediction, Hallucination Detection
Qiu, Zihang, Li, Chaojie, Wang, Zhongyang, Xie, Renyou, Zhang, Borui, Mo, Huadong, Chen, Guo, Dong, Zhaoyang
Accurate prediction helps to achieve supply-demand balance in energy systems, supporting decision-making and scheduling. Traditional models, lacking AI-assisted automation, rely on experts, incur high costs, and struggle with sparse data prediction. To address these challenges, we propose the Energy Forecasting Large Language Model (EF-LLM), which integrates domain knowledge and temporal data for time-series forecasting, supporting both pre-forecast operations and post-forecast decision-support. EF-LLM's human-AI interaction capabilities lower the entry barrier in forecasting tasks, reducing the need for extra expert involvement. To achieve this, we propose a continual learning approach with updatable LoRA and a multi-channel architecture for aligning heterogeneous multimodal data, enabling EF-LLM to continually learn heterogeneous multimodal knowledge. In addition, EF-LLM enables accurate predictions under sparse data conditions through its ability to process multimodal data. We propose Fusion Parameter-Efficient Fine-Tuning (F-PEFT) method to effectively leverage both time-series data and text for this purpose. EF-LLM is also the first energy-specific LLM to detect hallucinations and quantify their occurrence rate, achieved via multi-task learning, semantic similarity analysis, and ANOVA. We have achieved success in energy prediction scenarios for load, photovoltaic, and wind power forecast.
SonicSim: A customizable simulation platform for speech processing in moving sound source scenarios
Li, Kai, Sang, Wendi, Zeng, Chang, Yang, Runxuan, Chen, Guo, Hu, Xiaolin
The systematic evaluation of speech separation and enhancement models under moving sound source conditions typically requires extensive data comprising diverse scenarios. However, real-world datasets often contain insufficient data to meet the training and evaluation requirements of models. Although synthetic datasets offer a larger volume of data, their acoustic simulations lack realism. Consequently, neither real-world nor synthetic datasets effectively fulfill practical needs. To address these issues, we introduce SonicSim, a synthetic toolkit de-designed to generate highly customizable data for moving sound sources. SonicSim is developed based on the embodied AI simulation platform, Habitat-sim, supporting multi-level adjustments, including scene-level, microphone-level, and source-level, thereby generating more diverse synthetic data. Leveraging SonicSim, we constructed a moving sound source benchmark dataset, SonicSet, using the Librispeech, the Freesound Dataset 50k (FSD50K) and Free Music Archive (FMA), and 90 scenes from the Matterport3D to evaluate speech separation and enhancement models. Additionally, to validate the differences between synthetic data and real-world data, we randomly selected 5 hours of raw data without reverberation from the SonicSet validation set to record a real-world speech separation dataset, which was then compared with the corresponding synthetic datasets. Similarly, we utilized the real-world speech enhancement dataset RealMAN to validate the acoustic gap between other synthetic datasets and the SonicSet dataset for speech enhancement. The results indicate that the synthetic data generated by SonicSim can effectively generalize to real-world scenarios. Demo and code are publicly available at https://cslikai.cn/SonicSim/.
TIGER: Time-frequency Interleaved Gain Extraction and Reconstruction for Efficient Speech Separation
Xu, Mohan, Li, Kai, Chen, Guo, Hu, Xiaolin
In recent years, much speech separation research has focused primarily on improving model performance. However, for low-latency speech processing systems, high efficiency is equally important. Therefore, we propose a speech separation model with significantly reduced parameters and computational costs: Time-frequency Interleaved Gain Extraction and Reconstruction network (TIGER). TIGER leverages prior knowledge to divide frequency bands and compresses frequency information. We employ a multi-scale selective attention module to extract contextual features, while introducing a full-frequency-frame attention module to capture both temporal and frequency contextual information. Additionally, to more realistically evaluate the performance of speech separation models in complex acoustic environments, we introduce a dataset called EchoSet. This dataset includes noise and more realistic reverberation (e.g., considering object occlusions and material properties), with speech from two speakers overlapping at random proportions. Experimental results showed that models trained on EchoSet had better generalization ability than those trained on other datasets to the data collected in the physical world, which validated the practical value of the EchoSet. On EchoSet and real-world data, TIGER significantly reduces the number of parameters by 94.3% and the MACs by 95.3% while achieving performance surpassing state-of-the-art (SOTA) model TF-GridNet. This is the first speech separation model with fewer than 1 million parameters that achieves performance comparable to the SOTA model.
RH-SQL: Refined Schema and Hardness Prompt for Text-to-SQL
Yi, Jiawen, Chen, Guo, Shen, Zixiang
Text-to-SQL is a technology that converts natural language queries into the structured query language SQL. A novel research approach that has recently gained attention focuses on methods based on the complexity of SQL queries, achieving notable performance improvements. However, existing methods entail significant storage and training costs, which hampers their practical application. To address this issue, this paper introduces a method for Text-to-SQL based on Refined Schema and Hardness Prompt. By filtering out low-relevance schema information with a refined schema and identifying query hardness through a Language Model (LM) to form prompts, this method reduces storage and training costs while maintaining performance. It's worth mentioning that this method is applicable to any sequence-to-sequence (seq2seq) LM. Our experiments on the Spider dataset, specifically with large-scale LMs, achieved an exceptional Execution accuracy (EX) of 82.6%, demonstrating the effectiveness and greater suitability of our method for real-world applications.
SPMamba: State-space model is all you need in speech separation
Li, Kai, Chen, Guo
In speech separation, both CNN- and Transformer-based models have demonstrated robust separation capabilities, garnering significant attention within the research community. However, CNN-based methods have limited modelling capability for long-sequence audio, leading to suboptimal separation performance. Conversely, Transformer-based methods are limited in practical applications due to their high computational complexity. Notably, within computer vision, Mamba-based methods have been celebrated for their formidable performance and reduced computational requirements. In this paper, we propose a network architecture for speech separation using a state-space model, namely SPMamba. We adopt the TF-GridNet model as the foundational framework and substitute its Transformer component with a bidirectional Mamba module, aiming to capture a broader range of contextual information. Our experimental results reveal an important role in the performance aspects of Mamba-based models. SPMamba demonstrates superior performance with a significant advantage over existing separation models in a dataset built on Librispeech. Notably, SPMamba achieves a substantial improvement in separation quality, with a 2.42 dB enhancement in SI-SNRi compared to the TF-GridNet. The source code for SPMamba is publicly accessible at https://github.com/JusperLee/SPMamba .
Decoupling SQL Query Hardness Parsing for Text-to-SQL
Yi, Jiawen, Chen, Guo
The fundamental goal of the Text-to-SQL task is to translate natural language question into SQL query. Current research primarily emphasizes the information coupling between natural language questions and schemas, and significant progress has been made in this area. The natural language questions as the primary task requirements source determines the hardness of correspond SQL queries, the correlation between the two always be ignored. However, when the correlation between questions and queries was decoupled, it may simplify the task. In this paper, we introduce an innovative framework for Text-to-SQL based on decoupling SQL query hardness parsing. This framework decouples the Text-to-SQL task based on query hardness by analyzing questions and schemas, simplifying the multi-hardness task into a single-hardness challenge. This greatly reduces the parsing pressure on the language model. We evaluate our proposed framework and achieve a new state-of-the-art performance of fine-turning methods on Spider dev.
AVSegFormer: Audio-Visual Segmentation with Transformer
Gao, Shengyi, Chen, Zhe, Chen, Guo, Wang, Wenhai, Lu, Tong
The combination of audio and vision has long been a topic of interest in the multi-modal community. Recently, a new audio-visual segmentation (AVS) task has been introduced, aiming to locate and segment the sounding objects in a given video. This task demands audio-driven pixel-level scene understanding for the first time, posing significant challenges. In this paper, we propose AVSegFormer, a novel framework for AVS tasks that leverages the transformer architecture. Specifically, we introduce audio queries and learnable queries into the transformer decoder, enabling the network to selectively attend to interested visual features. Besides, we present an audio-visual mixer, which can dynamically adjust visual features by amplifying relevant and suppressing irrelevant spatial channels. Additionally, we devise an intermediate mask loss to enhance the supervision of the decoder, encouraging the network to produce more accurate intermediate predictions. Extensive experiments demonstrate that AVSegFormer achieves state-of-the-art results on the AVS benchmark. The code is available at https://github.com/vvvb-github/AVSegFormer.