Goto

Collaborating Authors

 Chen, Guihai


MPIC: Position-Independent Multimodal Context Caching System for Efficient MLLM Serving

arXiv.org Artificial Intelligence

The context caching technique is employed to accelerate the Multimodal Large Language Model (MLLM) inference by prevailing serving platforms currently. However, this approach merely reuses the Key-Value (KV) cache of the initial sequence of prompt, resulting in full KV cache recomputation even if the prefix differs slightly. This becomes particularly inefficient in the context of interleaved text and images, as well as multimodal retrieval-augmented generation. This paper proposes position-independent caching as a more effective approach for multimodal information management. We have designed and implemented a caching system, named MPIC, to address both system-level and algorithm-level challenges. MPIC stores the KV cache on local or remote disks when receiving multimodal data, and calculates and loads the KV cache in parallel during inference. To mitigate accuracy degradation, we have incorporated integrated reuse and recompute mechanisms within the system. The experimental results demonstrate that MPIC can achieve up to 54% reduction in response time compared to existing context caching systems, while maintaining negligible or no accuracy loss.


Personalized Language Model Learning on Text Data Without User Identifiers

arXiv.org Artificial Intelligence

In many practical natural language applications, user data are highly sensitive, requiring anonymous uploads of text data from mobile devices to the cloud without user identifiers. However, the absence of user identifiers restricts the ability of cloud-based language models to provide personalized services, which are essential for catering to diverse user needs. The trivial method of replacing an explicit user identifier with a static user embedding as model input still compromises data anonymization. In this work, we propose to let each mobile device maintain a user-specific distribution to dynamically generate user embeddings, thereby breaking the one-to-one mapping between an embedding and a specific user. We further theoretically demonstrate that to prevent the cloud from tracking users via uploaded embeddings, the local distributions of different users should either be derived from a linearly dependent space to avoid identifiability or be close to each other to prevent accurate attribution. Evaluation on both public and industrial datasets using different language models reveals a remarkable improvement in accuracy from incorporating anonymous user embeddings, while preserving real-time inference requirement.


CSR:Achieving 1 Bit Key-Value Cache via Sparse Representation

arXiv.org Artificial Intelligence

The emergence of long-context text applications utilizing large language models (LLMs) has presented significant scalability challenges, particularly in memory footprint. The linear growth of the Key-Value (KV) cache responsible for storing attention keys and values to minimize redundant computations can lead to substantial increases in memory consumption, potentially causing models to fail to serve with limited memory resources. To address this issue, we propose a novel approach called Cache Sparse Representation (CSR), which converts the KV cache by transforming the dense Key-Value cache tensor into sparse indexes and weights, offering a more memory-efficient representation during LLM inference. Furthermore, we introduce NeuralDict, a novel neural network-based method for automatically generating the dictionary used in our sparse representation. Our extensive experiments demonstrate that CSR achieves performance comparable to state-of-the-art KV cache quantization algorithms while maintaining robust functionality in memory-constrained environments.


Personalized LLM for Generating Customized Responses to the Same Query from Different Users

arXiv.org Artificial Intelligence

Existing work on large language model (LLM) personalization assigned different responding roles to LLM, but overlooked the diversity of questioners. In this work, we propose a new form of questioner-aware LLM personalization, generating different responses even for the same query from different questioners. We design a dual-tower model architecture with a cross-questioner general encoder and a questioner-specific encoder. We further apply contrastive learning with multi-view augmentation, pulling close the dialogue representations of the same questioner, while pulling apart those of different questioners. To mitigate the impact of question diversity on questioner-contrastive learning, we cluster the dialogues based on question similarity and restrict the scope of contrastive learning within each cluster. We also build a multi-questioner dataset from English and Chinese scripts and WeChat records, called MQDialog, containing 173 questioners and 12 responders. Extensive evaluation with different metrics shows a significant improvement in the quality of personalized response generation.


V-LoRA: An Efficient and Flexible System Boosts Vision Applications with LoRA LMM

arXiv.org Artificial Intelligence

Large Multimodal Models (LMMs) have shown significant progress in various complex vision tasks with the solid linguistic and reasoning capacity inherited from large language models (LMMs). Low-rank adaptation (LoRA) offers a promising method to integrate external knowledge into LMMs, compensating for their limitations on domain-specific tasks. However, the existing LoRA model serving is excessively computationally expensive and causes extremely high latency. In this paper, we present an end-to-end solution that empowers diverse vision tasks and enriches vision applications with LoRA LMMs. Our system, VaLoRA, enables accurate and efficient vision tasks by 1) an accuracy-aware LoRA adapter generation approach that generates LoRA adapters rich in domain-specific knowledge to meet application-specific accuracy requirements, 2) an adaptive-tiling LoRA adapters batching operator that efficiently computes concurrent heterogeneous LoRA adapters, and 3) a flexible LoRA adapter orchestration mechanism that manages application requests and LoRA adapters to achieve the lowest average response latency. We prototype VaLoRA on five popular vision tasks on three LMMs. Experiment results reveal that VaLoRA improves 24-62% of the accuracy compared to the original LMMs and reduces 20-89% of the latency compared to the state-of-the-art LoRA model serving systems.


Delta: A Cloud-assisted Data Enrichment Framework for On-Device Continual Learning

arXiv.org Artificial Intelligence

In modern mobile applications, users frequently encounter various new contexts, necessitating on-device continual learning (CL) to ensure consistent model performance. While existing research predominantly focused on developing lightweight CL frameworks, we identify that data scarcity is a critical bottleneck for on-device CL. In this work, we explore the potential of leveraging abundant cloud-side data to enrich scarce on-device data, and propose a private, efficient and effective data enrichment framework Delta. Specifically, Delta first introduces a directory dataset to decompose the data enrichment problem into device-side and cloud-side sub-problems without sharing sensitive data. Next, Delta proposes a soft data matching strategy to effectively solve the device-side sub-problem with sparse user data, and an optimal data sampling scheme for cloud server to retrieve the most suitable dataset for enrichment with low computational complexity. Further, Delta refines the data sampling scheme by jointly considering the impact of enriched data on both new and past contexts, mitigating the catastrophic forgetting issue from a new aspect. Comprehensive experiments across four typical mobile computing tasks with varied data modalities demonstrate that Delta could enhance the overall model accuracy by an average of 15.1%, 12.4%, 1.1% and 5.6% for visual, IMU, audio and textual tasks compared with few-shot CL, and consistently reduce the communication costs by over 90% compared to federated CL.


Reinfier and Reintrainer: Verification and Interpretation-Driven Safe Deep Reinforcement Learning Frameworks

arXiv.org Artificial Intelligence

Ensuring verifiable and interpretable safety of deep reinforcement learning (DRL) is crucial for its deployment in real-world applications. Existing approaches like verification-in-the-loop training, however, face challenges such as difficulty in deployment, inefficient training, lack of interpretability, and suboptimal performance in property satisfaction and reward performance. In this work, we propose a novel verification-driven interpretation-in-the-loop framework Reintrainer to develop trustworthy DRL models, which are guaranteed to meet the expected constraint properties. Specifically, in each iteration, this framework measures the gap between the on-training model and predefined properties using formal verification, interprets the contribution of each input feature to the model's output, and then generates the training strategy derived from the on-the-fly measure results, until all predefined properties are proven. Additionally, the low reusability of existing verifiers and interpreters motivates us to develop Reinfier, a general and fundamental tool within Reintrainer for DRL verification and interpretation. Reinfier features breakpoints searching and verification-driven interpretation, associated with a concise constraint-encoding language DRLP. Evaluations demonstrate that Reintrainer outperforms the state-of-the-art on six public benchmarks in both performance and property guarantees. Our framework can be accessed at https://github.com/Kurayuri/Reinfier.


Generative Pre-trained Ranking Model with Over-parameterization at Web-Scale (Extended Abstract)

arXiv.org Artificial Intelligence

Learning to rank (LTR) is widely employed in web The optimization of the user experience, achieved by catering searches to prioritize pertinent webpages from retrieved to information needs, largely depends on the effective content based on input queries. However, sorting of retrieved content. In this realm, Learning to Rank traditional LTR models encounter two principal obstacles (LTR) becomes instrumental, requiring a considerable amount that lead to suboptimal performance: (1) the of query-webpage pairings with relevancy scores for effective lack of well-annotated query-webpage pairs with supervised LTR [Li et al., 2023b; Qin and Liu, 2013; ranking scores covering a diverse range of search Li et al., 2023c; Lyu et al., 2020; Peng et al., 2024; query popularities, which hampers their ability to Wang et al., 2024b]. Nevertheless, the commonplace scarcity address queries across the popularity spectrum, and of well-described, query-webpage pairings often compels (2) inadequately trained models that fail to induce semi-supervised LTR, harnessing both labeled and unlabeled generalized representations for LTR, resulting in samples for the process [Szummer and Yilmaz, 2011; overfitting. To address these challenges, we propose Zhang et al., 2016; Zhu et al., 2023; Peng et al., 2023].


2DQuant: Low-bit Post-Training Quantization for Image Super-Resolution

arXiv.org Artificial Intelligence

Low-bit quantization has become widespread for compressing image super-resolution (SR) models for edge deployment, which allows advanced SR models to enjoy compact low-bit parameters and efficient integer/bitwise constructions for storage compression and inference acceleration, respectively. However, it is notorious that low-bit quantization degrades the accuracy of SR models compared to their full-precision (FP) counterparts. Despite several efforts to alleviate the degradation, the transformer-based SR model still suffers severe degradation due to its distinctive activation distribution. In this work, we present a dual-stage low-bit post-training quantization (PTQ) method for image super-resolution, namely 2DQuant, which achieves efficient and accurate SR under low-bit quantization. The proposed method first investigates the weight and activation and finds that the distribution is characterized by coexisting symmetry and asymmetry, long tails. Specifically, we propose Distribution-Oriented Bound Initialization (DOBI), using different searching strategies to search a coarse bound for quantizers. To obtain refined quantizer parameters, we further propose Distillation Quantization Calibration (DQC), which employs a distillation approach to make the quantized model learn from its FP counterpart. Through extensive experiments on different bits and scaling factors, the performance of DOBI can reach the state-of-the-art (SOTA) while after stage two, our method surpasses existing PTQ in both metrics and visual effects. 2DQuant gains an increase in PSNR as high as 4.52dB on Set5 (x2) compared with SOTA when quantized to 2-bit and enjoys a 3.60x compression ratio and 5.08x speedup ratio. The code and models will be available at https://github.com/Kai-Liu001/2DQuant.


Fast Chain-of-Thought: A Glance of Future from Parallel Decoding Leads to Answers Faster

arXiv.org Artificial Intelligence

In this work, we propose FastCoT, a model-agnostic framework based on parallel decoding without any further training of an auxiliary model or modification to the LLM itself. FastCoT uses a size-varying context window whose size changes with position to conduct parallel decoding and auto-regressive decoding simultaneously, thus fully utilizing GPU computation resources. In FastCoT, the parallel decoding part provides the LLM with a quick glance of the future composed of approximate tokens, which could lead to faster answers compared to regular autoregressive decoding used by causal transformers. We also provide an implementation of parallel decoding within LLM, which supports KV-cache generation and batch processing. Through extensive experiments, we demonstrate that FastCoT saves inference time by nearly 20% with only a negligible performance drop compared to the regular approach. Additionally, we show that the context window size exhibits considerable robustness for different tasks.