Chen, Guanying
LHM: Large Animatable Human Reconstruction Model from a Single Image in Seconds
Qiu, Lingteng, Gu, Xiaodong, Li, Peihao, Zuo, Qi, Shen, Weichao, Zhang, Junfei, Qiu, Kejie, Yuan, Weihao, Chen, Guanying, Dong, Zilong, Bo, Liefeng
Animatable 3D human reconstruction from a single image is a challenging problem due to the ambiguity in decoupling geometry, appearance, and deformation. Recent advances in 3D human reconstruction mainly focus on static human modeling, and the reliance of using synthetic 3D scans for training limits their generalization ability. Conversely, optimization-based video methods achieve higher fidelity but demand controlled capture conditions and computationally intensive refinement processes. Motivated by the emergence of large reconstruction models for efficient static reconstruction, we propose LHM (Large Animatable Human Reconstruction Model) to infer high-fidelity avatars represented as 3D Gaussian splatting in a feed-forward pass. Our model leverages a multimodal transformer architecture to effectively encode the human body positional features and image features with attention mechanism, enabling detailed preservation of clothing geometry and texture. To further boost the face identity preservation and fine detail recovery, we propose a head feature pyramid encoding scheme to aggregate multi-scale features of the head regions. Extensive experiments demonstrate that our LHM generates plausible animatable human in seconds without post-processing for face and hands, outperforming existing methods in both reconstruction accuracy and generalization ability.
AniGS: Animatable Gaussian Avatar from a Single Image with Inconsistent Gaussian Reconstruction
Qiu, Lingteng, Zhu, Shenhao, Zuo, Qi, Gu, Xiaodong, Dong, Yuan, Zhang, Junfei, Xu, Chao, Li, Zhe, Yuan, Weihao, Bo, Liefeng, Chen, Guanying, Dong, Zilong
Generating animatable human avatars from a single image is essential for various digital human modeling applications. Existing 3D reconstruction methods often struggle to capture fine details in animatable models, while generative approaches for controllable animation, though avoiding explicit 3D modeling, suffer from viewpoint inconsistencies in extreme poses and computational inefficiencies. In this paper, we address these challenges by leveraging the power of generative models to produce detailed multi-view canonical pose images, which help resolve ambiguities in animatable human reconstruction. We then propose a robust method for 3D reconstruction of inconsistent images, enabling real-time rendering during inference. Specifically, we adapt a transformer-based video generation model to generate multi-view canonical pose images and normal maps, pretraining on a large-scale video dataset to improve generalization. To handle view inconsistencies, we recast the reconstruction problem as a 4D task and introduce an efficient 3D modeling approach using 4D Gaussian Splatting. Experiments demonstrate that our method achieves photorealistic, real-time animation of 3D human avatars from in-the-wild images, showcasing its effectiveness and generalization capability.
RichDreamer: A Generalizable Normal-Depth Diffusion Model for Detail Richness in Text-to-3D
Qiu, Lingteng, Chen, Guanying, Gu, Xiaodong, Zuo, Qi, Xu, Mutian, Wu, Yushuang, Yuan, Weihao, Dong, Zilong, Bo, Liefeng, Han, Xiaoguang
Lifting 2D diffusion for 3D generation is a challenging problem due to the lack of geometric prior and the complex entanglement of materials and lighting in natural images. Existing methods have shown promise by first creating the geometry through score-distillation sampling (SDS) applied to rendered surface normals, followed by appearance modeling. However, relying on a 2D RGB diffusion model to optimize surface normals is suboptimal due to the distribution discrepancy between natural images and normals maps, leading to instability in optimization. In this paper, recognizing that the normal and depth information effectively describe scene geometry and be automatically estimated from images, we propose to learn a generalizable Normal-Depth diffusion model for 3D generation. We achieve this by training on the large-scale LAION dataset together with the generalizable image-to-depth and normal prior models. In an attempt to alleviate the mixed illumination effects in the generated materials, we introduce an albedo diffusion model to impose data-driven constraints on the albedo component. Our experiments show that when integrated into existing text-to-3D pipelines, our models significantly enhance the detail richness, achieving state-of-the-art results. Our project page is https://aigc3d.github.io/richdreamer/.
Knowledge Base Enabled Semantic Communication: A Generative Perspective
Ren, Jinke, Zhang, Zezhong, Xu, Jie, Chen, Guanying, Sun, Yaping, Zhang, Ping, Cui, Shuguang
Semantic communication is widely touted as a key technology for propelling the sixth-generation (6G) wireless networks. However, providing effective semantic representation is quite challenging in practice. To address this issue, this article takes a crack at exploiting semantic knowledge base (KB) to usher in a new era of generative semantic communication. Via semantic KB, source messages can be characterized in low-dimensional subspaces without compromising their desired meaning, thus significantly enhancing the communication efficiency. The fundamental principle of semantic KB is first introduced, and a generative semantic communication architecture is developed by presenting three sub-KBs, namely source, task, and channel KBs. Then, the detailed construction approaches for each sub-KB are described, followed by their utilization in terms of semantic coding and transmission. A case study is also provided to showcase the superiority of generative semantic communication over conventional syntactic communication and classical semantic communication. In a nutshell, this article establishes a scientific foundation for the exciting uncharted frontier of generative semantic communication.
PS-NeRF: Neural Inverse Rendering for Multi-view Photometric Stereo
Yang, Wenqi, Chen, Guanying, Chen, Chaofeng, Chen, Zhenfang, Wong, Kwan-Yee K.
Traditional multi-view photometric stereo (MVPS) methods are often composed of multiple disjoint stages, resulting in noticeable accumulated errors. In this paper, we present a neural inverse rendering method for MVPS based on implicit representation. Given multi-view images of a non-Lambertian object illuminated by multiple unknown directional lights, our method jointly estimates the geometry, materials, and lights. Our method first employs multi-light images to estimate per-view surface normal maps, which are used to regularize the normals derived from the neural radiance field. It then jointly optimizes the surface normals, spatially-varying BRDFs, and lights based on a shadow-aware differentiable rendering layer. After optimization, the reconstructed object can be used for novel-view rendering, relighting, and material editing. Experiments on both synthetic and real datasets demonstrate that our method achieves far more accurate shape reconstruction than existing MVPS and neural rendering methods. Our code and model can be found at https://ywq.github.io/psnerf.