Chen, Enhong
Neural Architecture Search with GBDT
Luo, Renqian, Tan, Xu, Wang, Rui, Qin, Tao, Chen, Enhong, Liu, Tie-Yan
Neural architecture search (NAS) with an accuracy predictor that predicts the accuracy of candidate architectures has drawn increasing interests due to its simplicity and effectiveness. Previous works employ neural network based predictors which unfortunately cannot well exploit the tabular data representations of network architectures. As decision tree-based models can better handle tabular data, in this paper, we propose to leverage gradient boosting decision tree (GBDT) as the predictor for NAS and demonstrate that it can improve the prediction accuracy and help to find better architectures than neural network based predictors. Moreover, considering that a better and compact search space can ease the search process, we propose to prune the search space gradually according to important features derived from GBDT using an interpreting tool named SHAP. In this way, NAS can be performed by first pruning the search space (using GBDT as a pruner) and then searching a neural architecture (using GBDT as a predictor), which is more efficient and effective. Experiments on NASBench-101 and ImageNet demonstrate the effectiveness of GBDT for NAS: (1) NAS with GBDT predictor finds top-10 architecture (among all the architectures in the search space) with $0.18\%$ test regret on NASBench-101, and achieves $24.2\%$ top-1 error rate on ImageNet; and (2) GBDT based search space pruning and neural architecture search further achieves $23.5\%$ top-1 error rate on ImageNet.
ASGN: An Active Semi-supervised Graph Neural Network for Molecular Property Prediction
Hao, Zhongkai, Lu, Chengqiang, Hu, Zheyuan, Wang, Hao, Huang, Zhenya, Liu, Qi, Chen, Enhong, Lee, Cheekong
Molecular property prediction (e.g., energy) is an essential problem in chemistry and biology. Unfortunately, many supervised learning methods usually suffer from the problem of scarce labeled molecules in the chemical space, where such property labels are generally obtained by Density Functional Theory (DFT) calculation which is extremely computational costly. An effective solution is to incorporate the unlabeled molecules in a semi-supervised fashion. However, learning semi-supervised representation for large amounts of molecules is challenging, including the joint representation issue of both molecular essence and structure, the conflict between representation and property leaning. Here we propose a novel framework called Active Semi-supervised Graph Neural Network (ASGN) by incorporating both labeled and unlabeled molecules. Specifically, ASGN adopts a teacher-student framework. In the teacher model, we propose a novel semi-supervised learning method to learn general representation that jointly exploits information from molecular structure and molecular distribution. Then in the student model, we target at property prediction task to deal with the learning loss conflict. At last, we proposed a novel active learning strategy in terms of molecular diversities to select informative data during the whole framework learning. We conduct extensive experiments on several public datasets. Experimental results show the remarkable performance of our ASGN framework.
Neural Architecture Optimization
Luo, Renqian, Tian, Fei, Qin, Tao, Chen, Enhong, Liu, Tie-Yan
Automatic neural architecture design has shown its potential in discovering powerful neural network architectures. Existing methods, no matter based on reinforcement learning or evolutionary algorithms (EA), conduct architecture search in a discrete space, which is highly inefficient. In this paper, we propose a simple and efficient method to automatic neural architecture design based on continuous optimization. We call this new approach neural architecture optimization (NAO). There are three key components in our proposed approach: (1) An encoder embeds/maps neural network architectures into a continuous space.
Deep Technology Tracing for High-tech Companies
Wu, Han, Zhang, Kun, Lv, Guangyi, Liu, Qi, Yu, Runlong, Zhao, Weihao, Chen, Enhong, Ma, Jianhui
Technological change and innovation are vitally important, especially for high-tech companies. However, factors influencing their future research and development (R&D) trends are both complicated and various, leading it a quite difficult task to make technology tracing for high-tech companies. To this end, in this paper, we develop a novel data-driven solution, i.e., Deep Technology Forecasting (DTF) framework, to automatically find the most possible technology directions customized to each high-tech company. Specially, DTF consists of three components: Potential Competitor Recognition (PCR), Collaborative Technology Recognition (CTR), and Deep Technology Tracing (DTT) neural network. For one thing, PCR and CTR aim to capture competitive relations among enterprises and collaborative relations among technologies, respectively. For another, DTT is designed for modeling dynamic interactions between companies and technologies with the above relations involved. Finally, we evaluate our DTF framework on real-world patent data, and the experimental results clearly prove that DTF can precisely help to prospect future technology emphasis of companies by exploiting hybrid factors.
Long-term Joint Scheduling for Urban Traffic
Liang, Xianfeng, Wu, Likang, Chen, Joya, Liu, Yang, Yu, Runlong, Hou, Min, Wu, Han, Ye, Yuyang, Liu, Qi, Chen, Enhong
Recently, the traffic congestion in modern cities has become a growing worry for the residents. As presented in Baidu traffic report, the commuting stress index has reached surprising 1.973 in Beijing during rush hours, which results in longer trip time and increased vehicular queueing. Previous works have demonstrated that by reasonable scheduling, e.g, rebalancing bike-sharing systems and optimized bus transportation, the traffic efficiency could be significantly improved with little resource consumption. However, there are still two disadvantages that restrict their performance: (1) they only consider single scheduling in a short time, but ignoring the layout after first reposition, and (2) they only focus on the single transport. However, the multi-modal characteristics of urban public transportation are largely under-exploited. In this paper, we propose an efficient and economical multi-modal traffic scheduling scheme named JLRLS based on spatio -temporal prediction, which adopts reinforcement learning to obtain optimal long-term and joint schedule. In JLRLS, we combines multiple transportation to conduct scheduling by their own characteristics, which potentially helps the system to reach the optimal performance. Our implementation of an example by PaddlePaddle is available at https://github.com/bigdata-ustc/Long-term-Joint-Scheduling, with an explaining video at https://youtu.be/t5M2wVPhTyk.
Understanding and Improving One-shot Neural Architecture Optimization
Luo, Renqian, Qin, Tao, Chen, Enhong
The ability of accurately ranking candidate architectures is the key to the performance of neural architecture search~(NAS). One-shot NAS is proposed to cut the expense but shows inferior performance against conventional NAS and is not adequately stable. We find that the ranking correlation between architectures under one-shot training and the ones under stand-alone training is poor, which misleads the algorithm to discover better architectures. We conjecture that this is owing to the gaps between one-shot training and stand-alone complete training. In this work, we empirically investigate several main factors that lead to the gaps and so weak ranking correlation. We then propose NAO-V2 to alleviate such gaps where we: (1) Increase the average updates for individual architecture to a relatively adequate extent. (2) Encourage more updates for large and complex architectures than small and simple architectures to balance them by sampling architectures in proportion to their model sizes. (3) Make the one-shot training of the supernet independent at each iteration. Comprehensive experiments verify that our proposed method is effective and robust. It leads to a more stable search that all the top architectures perform well enough compared to baseline methods. The final discovered architecture shows significant improvements against baselines with a test error rate of 2.60% on CIFAR-10 and top-1 accuracy of 74.4% on ImageNet under the mobile setting. Code and model checkpoints are publicly available at https://github.com/renqianluo/NAO_pytorch.
STMARL: A Spatio-Temporal Multi-Agent Reinforcement Learning Approach for Traffic Light Control
Wang, Yanan, Xu, Tong, Niu, Xin, Tan, Chang, Chen, Enhong, Xiong, Hui
The development of intelligent traffic light control systems is essential for smart transportation management. While some efforts have been made to optimize the use of individual traffic lights in an isolated way, related studies have largely ignored the fact that the use of multi-intersection traffic lights is spatially influenced and there is a temporal dependency of historical traffic status for current traffic light control. To that end, in this paper, we propose a novel SpatioTemporal Multi-Agent Reinforcement Learning (STMARL) framework for effectively capturing the spatio-temporal dependency of multiple related traffic lights and control these traffic lights in a coordinating way. Specifically, we first construct the traffic light adjacency graph based on the spatial structure among traffic lights. Then, historical traffic records will be integrated with current traffic status via Recurrent Neural Network structure. Moreover, based on the temporally-dependent traffic information, we design a Graph Neural Network based model to represent relationships among multiple traffic lights, and the decision for each traffic light will be made in a distributed way by the deep Q-learning method. Finally, the experimental results on both synthetic and real-world data have demonstrated the effectiveness of our STMARL framework, which also provides an insightful understanding of the influence mechanism among multi-intersection traffic lights.
Interpretable Cognitive Diagnosis with Neural Network for Intelligent Educational Systems
Wang, Fei, Liu, Qi, Chen, Enhong, Huang, Zhenya
In intelligent education systems, one key issue is to discover students' proficiency level on specific knowledge concepts, which called cognitive diagnosis. Existing approaches usually mine the student exercising process by manually designed function, which is usually linear and not sufficient to capture complex relations between students and exercises. In this paper, we propose a general Neural Cognitive Diagnosis (NeuralCD) framework, which incorporates neural networks to learn the complex interactions between student's and exercise's factor vectors. The interpretability of factor vectors is guaranteed with the monotonicity assumption borrowed from educational psychology. We provide NeuralCDM model as an implementation example of the framework. Further, we explore the text content for improving NeuralCDM to show the extendability of NeuralCD, and demonstrate the generality of NeuralCD by proving how it covers some traditional diagnostic models. Extensive experimental results on real-world datasets show the effectiveness of NeuralCD framework with both accuracy and interpretability.
Budgeted Policy Learning for Task-Oriented Dialogue Systems
Zhang, Zhirui, Li, Xiujun, Gao, Jianfeng, Chen, Enhong
This paper presents a new approach that extends Deep Dyna-Q (DDQ) by incorporating a Budget-Conscious Scheduling (BCS) to best utilize a fixed, small amount of user interactions (budget) for learning task-oriented dialogue agents. BCS consists of (1) a Poisson-based global scheduler to allocate budget over different stages of training; (2) a controller to decide at each training step whether the agent is trained using real or simulated experiences; (3) a user goal sampling module to generate the experiences that are most effective for policy learning. Experiments on a movie-ticket booking task with simulated and real users show that our approach leads to significant improvements in success rate over the state-of-the-art baselines given the fixed budget.
Transcribing Content from Structural Images with Spotlight Mechanism
Yin, Yu, Huang, Zhenya, Chen, Enhong, Liu, Qi, Zhang, Fuzheng, Xie, Xing, Hu, Guoping
Transcribing content from structural images, e.g., writing notes from music scores, is a challenging task as not only the content objects should be recognized, but the internal structure should also be preserved. Existing image recognition methods mainly work on images with simple content (e.g., text lines with characters), but are not capable to identify ones with more complex content (e.g., structured symbols), which often follow a fine-grained grammar. To this end, in this paper, we propose a hierarchical Spotlight Transcribing Network (STN) framework followed by a two-stage "where-to-what" solution. Specifically, we first decide "where-to-look" through a novel spotlight mechanism to focus on different areas of the original image following its structure. Then, we decide "what-to-write" by developing a GRU based network with the spotlight areas for transcribing the content accordingly. Moreover, we propose two implementations on the basis of STN, i.e., STNM and STNR, where the spotlight movement follows the Markov property and Recurrent modeling, respectively. We also design a reinforcement method to refine the framework by self-improving the spotlight mechanism. We conduct extensive experiments on many structural image datasets, where the results clearly demonstrate the effectiveness of STN framework.