Chen, Enhong
Estimating Fund-Raising Performance for Start-up Projects from a Market Graph Perspective
Wu, Likang, Li, Zhi, Zhao, Hongke, Liu, Qi, Chen, Enhong
In the online innovation market, the fund-raising performance of the start-up project is a concerning issue for creators, investors and platforms. Unfortunately, existing studies always focus on modeling the fund-raising process after the publishment of a project but the predicting of a project attraction in the market before setting up is largely unexploited. Usually, this prediction is always with great challenges to making a comprehensive understanding of both the start-up project and market environment. To that end, in this paper, we present a focused study on this important problem from a market graph perspective. Specifically, we propose a Graph-based Market Environment (GME) model for predicting the fund-raising performance of the unpublished project by exploiting the market environment. In addition, we discriminatively model the project competitiveness and market preferences by designing two graph-based neural network architectures and incorporating them into a joint optimization stage. Furthermore, to explore the information propagation problem with dynamic environment in a large-scale market graph, we extend the GME model with parallelizing competitiveness quantification and hierarchical propagation algorithm. Finally, we conduct extensive experiments on real-world data. The experimental results clearly demonstrate the effectiveness of our proposed model.
XCrossNet: Feature Structure-Oriented Learning for Click-Through Rate Prediction
Yu, Runlong, Ye, Yuyang, Liu, Qi, Wang, Zihan, Yang, Chunfeng, Hu, Yucheng, Chen, Enhong
Click-Through Rate (CTR) prediction is a core task in nowadays commercial recommender systems. Feature crossing, as the mainline of research on CTR prediction, has shown a promising way to enhance predictive performance. Even though various models are able to learn feature interactions without manual feature engineering, they rarely attempt to individually learn representations for different feature structures. In particular, they mainly focus on the modeling of cross sparse features but neglect to specifically represent cross dense features. Motivated by this, we propose a novel Extreme Cross Network, abbreviated XCrossNet, which aims at learning dense and sparse feature interactions in an explicit manner. XCrossNet as a feature structure-oriented model leads to a more expressive representation and a more precise CTR prediction, which is not only explicit and interpretable, but also time-efficient and easy to implement.
LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search
Luo, Renqian, Tan, Xu, Wang, Rui, Qin, Tao, Li, Jinzhu, Zhao, Sheng, Chen, Enhong, Liu, Tie-Yan
Text to speech (TTS) has been broadly used to synthesize natural and intelligible speech in different scenarios. Deploying TTS in various end devices such as mobile phones or embedded devices requires extremely small memory usage and inference latency. While non-autoregressive TTS models such as FastSpeech have achieved significantly faster inference speed than autoregressive models, their model size and inference latency are still large for the deployment in resource constrained devices. In this paper, we propose LightSpeech, which leverages neural architecture search~(NAS) to automatically design more lightweight and efficient models based on FastSpeech. We first profile the components of current FastSpeech model and carefully design a novel search space containing various lightweight and potentially effective architectures. Then NAS is utilized to automatically discover well performing architectures within the search space. Experiments show that the model discovered by our method achieves 15x model compression ratio and 6.5x inference speedup on CPU with on par voice quality. Audio demos are provided at https://speechresearch.github.io/lightspeech.
Drug Package Recommendation via Interaction-aware Graph Induction
Zheng, Zhi, Wang, Chao, Xu, Tong, Shen, Dazhong, Qin, Penggang, Huai, Baoxing, Liu, Tongzhu, Chen, Enhong
Recent years have witnessed the rapid accumulation of massive electronic medical records (EMRs), which highly support the intelligent medical services such as drug recommendation. However, prior arts mainly follow the traditional recommendation strategies like collaborative filtering, which usually treat individual drugs as mutually independent, while the latent interactions among drugs, e.g., synergistic or antagonistic effect, have been largely ignored. To that end, in this paper, we target at developing a new paradigm for drug package recommendation with considering the interaction effect within drugs, in which the interaction effects could be affected by patient conditions. Specifically, we first design a pre-training method based on neural collaborative filtering to get the initial embedding of patients and drugs. Then, the drug interaction graph will be initialized based on medical records and domain knowledge. Along this line, we propose a new Drug Package Recommendation (DPR) framework with two variants, respectively DPR on Weighted Graph (DPR-WG) and DPR on Attributed Graph (DPR-AG) to solve the problem, in which each the interactions will be described as signed weights or attribute vectors. In detail, a mask layer is utilized to capture the impact of patient condition, and graph neural networks (GNNs) are leveraged for the final graph induction task to embed the package. Extensive experiments on a real-world data set from a first-rate hospital demonstrate the effectiveness of our DPR framework compared with several competitive baseline methods, and further support the heuristic study for the drug package generation task with adequate performance.
Inheritance-guided Hierarchical Assignment for Clinical Automatic Diagnosis
Du, Yichao, Luo, Pengfei, Hong, Xudong, Xu, Tong, Zhang, Zhe, Ren, Chao, Zheng, Yi, Chen, Enhong
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making. Considering that manual diagnosis could be error-prone and time-consuming, many intelligent approaches based on clinical text mining have been proposed to perform automatic diagnosis. However, these methods may not achieve satisfactory results due to the following challenges. First, most of the diagnosis codes are rare, and the distribution is extremely unbalanced. Second, existing methods are challenging to capture the correlation between diagnosis codes. Third, the lengthy clinical note leads to the excessive dispersion of key information related to codes. To tackle these challenges, we propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis. Specifically, we propose a hierarchical joint prediction strategy to address the challenge of unbalanced codes distribution. Then, we utilize graph convolutional neural networks to obtain the correlation and semantic representations of medical ontology. Furthermore, we introduce multi attention mechanisms to extract crucial information. Finally, extensive experiments on MIMIC-III dataset clearly validate the effectiveness of our method.
Learning the Implicit Semantic Representation on Graph-Structured Data
Wu, Likang, Li, Zhi, Zhao, Hongke, Liu, Qi, Wang, Jun, Zhang, Mengdi, Chen, Enhong
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole, while the implicit semantic associations behind highly complex interactions of graphs are largely unexploited. In this paper, we propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs. In previous work, there are explorations of graph semantics via meta-paths. However, these methods mainly rely on explicit heterogeneous information that is hard to be obtained in a large amount of graph-structured data. SGCN first breaks through this restriction via leveraging the semantic-paths dynamically and automatically during the node aggregating process. To evaluate our idea, we conduct sufficient experiments on several standard datasets, and the empirical results show the superior performance of our model.
Quality meets Diversity: A Model-Agnostic Framework for Computerized Adaptive Testing
Bi, Haoyang, Ma, Haiping, Huang, Zhenya, Yin, Yu, Liu, Qi, Chen, Enhong, Su, Yu, Wang, Shijin
Computerized Adaptive Testing (CAT) is emerging as a promising testing application in many scenarios, such as education, game and recruitment, which targets at diagnosing the knowledge mastery levels of examinees on required concepts. It shows the advantage of tailoring a personalized testing procedure for each examinee, which selects questions step by step, depending on her performance. While there are many efforts on developing CAT systems, existing solutions generally follow an inflexible model-specific fashion. That is, they need to observe a specific cognitive model which can estimate examinee's knowledge levels and design the selection strategy according to the model estimation. In this paper, we study a novel model-agnostic CAT problem, where we aim to propose a flexible framework that can adapt to different cognitive models. Meanwhile, this work also figures out CAT solution with addressing the problem of how to generate both high-quality and diverse questions simultaneously, which can give a comprehensive knowledge diagnosis for each examinee. Inspired by Active Learning, we propose a novel framework, namely Model-Agnostic Adaptive Testing (MAAT) for CAT solution, where we design three sophisticated modules including Quality Module, Diversity Module and Importance Module. Extensive experimental results on two real-world datasets clearly demonstrate that our MAAT can support CAT with guaranteeing both quality and diversity perspectives.
R$^2$-Net: Relation of Relation Learning Network for Sentence Semantic Matching
Zhang, Kun, Wu, Le, Lv, Guangyi, Wang, Meng, Chen, Enhong, Ruan, Shulan
Sentence semantic matching is one of the fundamental tasks in natural language processing, which requires an agent to determine the semantic relation among input sentences. Recently, deep neural networks have achieved impressive performance in this area, especially BERT. Despite the effectiveness of these models, most of them treat output labels as meaningless one-hot vectors, underestimating the semantic information and guidance of relations that these labels reveal, especially for tasks with a small number of labels. To address this problem, we propose a Relation of Relation Learning Network (R2-Net) for sentence semantic matching. Specifically, we first employ BERT to encode the input sentences from a global perspective. Then a CNN-based encoder is designed to capture keywords and phrase information from a local perspective. To fully leverage labels for better relation information extraction, we introduce a self-supervised relation of relation classification task for guiding R2-Net to consider more about labels. Meanwhile, a triplet loss is employed to distinguish the intra-class and inter-class relations in a finer granularity. Empirical experiments on two sentence semantic matching tasks demonstrate the superiority of our proposed model. As a byproduct, we have released the codes to facilitate other researches.
Multi-Interactive Attention Network for Fine-grained Feature Learning in CTR Prediction
Zhang, Kai, Qian, Hao, Cui, Qing, Liu, Qi, Li, Longfei, Zhou, Jun, Ma, Jianhui, Chen, Enhong
In the Click-Through Rate (CTR) prediction scenario, user's sequential behaviors are well utilized to capture the user interest in the recent literature. However, despite being extensively studied, these sequential methods still suffer from three limitations. First, existing methods mostly utilize attention on the behavior of users, which is not always suitable for CTR prediction, because users often click on new products that are irrelevant to any historical behaviors. Second, in the real scenario, there exist numerous users that have operations a long time ago, but turn relatively inactive in recent times. Thus, it is hard to precisely capture user's current preferences through early behaviors. Third, multiple representations of user's historical behaviors in different feature subspaces are largely ignored. To remedy these issues, we propose a Multi-Interactive Attention Network (MIAN) to comprehensively extract the latent relationship among all kinds of fine-grained features (e.g., gender, age and occupation in user-profile). Specifically, MIAN contains a Multi-Interactive Layer (MIL) that integrates three local interaction modules to capture multiple representations of user preference through sequential behaviors and simultaneously utilize the fine-grained user-specific as well as context information. In addition, we design a Global Interaction Module (GIM) to learn the high-order interactions and balance the different impacts of multiple features. Finally, Offline experiment results from three datasets, together with an Online A/B test in a large-scale recommendation system, demonstrate the effectiveness of our proposed approach.
Sampling-Decomposable Generative Adversarial Recommender
Jin, Binbin, Lian, Defu, Liu, Zheng, Liu, Qi, Ma, Jianhui, Xie, Xing, Chen, Enhong
Recommendation techniques are important approaches for alleviating information overload. Being often trained on implicit user feedback, many recommenders suffer from the sparsity challenge due to the lack of explicitly negative samples. The GAN-style recommenders (i.e., IRGAN) addresses the challenge by learning a generator and a discriminator adversarially, such that the generator produces increasingly difficult samples for the discriminator to accelerate optimizing the discrimination objective. However, producing samples from the generator is very time-consuming, and our empirical study shows that the discriminator performs poor in top-k item recommendation. To this end, a theoretical analysis is made for the GAN-style algorithms, showing that the generator of limit capacity is diverged from the optimal generator. This may interpret the limitation of discriminator's performance. Based on these findings, we propose a Sampling-Decomposable Generative Adversarial Recommender (SD-GAR). In the framework, the divergence between some generator and the optimum is compensated by self-normalized importance sampling; the efficiency of sample generation is improved with a sampling-decomposable generator, such that each sample can be generated in O(1) with the Vose-Alias method. Interestingly, due to decomposability of sampling, the generator can be optimized with the closed-form solutions in an alternating manner, being different from policy gradient in the GAN-style algorithms. We extensively evaluate the proposed algorithm with five real-world recommendation datasets. The results show that SD-GAR outperforms IRGAN by 12.4% and the SOTA recommender by 10% on average. Moreover, discriminator training can be 20x faster on the dataset with more than 120K items.