Chen, Duo
Enhancing Subsequent Video Retrieval via Vision-Language Models (VLMs)
Duan, Yicheng, Huang, Xi, Chen, Duo
The rapid growth of video content demands efficient and precise retrieval systems. While vision-language models (VLMs) excel in representation learning, they often struggle with adaptive, time-sensitive video retrieval. This paper introduces a novel framework that combines vector similarity search with graph-based data structures. By leveraging VLM embeddings for initial retrieval and modeling contextual relationships among video segments, our approach enables adaptive query refinement and improves retrieval accuracy. Experiments demonstrate its precision, scalability, and robustness, offering an effective solution for interactive video retrieval in dynamic environments.
Exact Fit Attention in Node-Holistic Graph Convolutional Network for Improved EEG-Based Driver Fatigue Detection
Xu, Meiyan, Chen, Qingqing, Chen, Duo, Ding, Yi, Wang, Jingyuan, Gu, Peipei, Pan, Yijie, Huang, Deshuang, Zhang, Xun, Guo, Jiayang
-- EEG-based fatigue monitoring can effectively reduce the incidence of related traffic accidents. In the past decade, with the advancement of deep learning, convolu-tional neural networks (CNN) have been increasingly used for EEG signal processing. However, due to the data's non-Euclidean characteristics, existing CNNs may lose important spatial information from EEG, specifically channel correlation. Thus, we propose the node-holistic graph convo-lutional network (NHGNet), a model that uses graphic convolution to dynamically learn each channel's features. The interpretability is enhanced by revealing critical areas of brain activity and their interrelations in various mental states. In validations on two public datasets, NHGNet outperforms the SOTAs. Specifically, in the intra-subject, NHGNet improved detection accuracy by at least 2.34% and 3.42%, and in the inter-subjects, it improved by at least 2.09% and 15.06%. Visualization research on the model revealed that the central parietal area plays an important role in detecting fatigue levels, whereas the frontal and temporal lobes are essential for maintaining vigilance. Duo Chen is with the School of Artificial Intelligence and Information T echnology, Nanjing University of Chinese Medicine, Nanjing 210023, China (e-mail: 380013@njucm.edu.cn). Yi Ding is with the College of Computing and Data Science, Nanyang T echnological University, Singapore.