Goto

Collaborating Authors

 Chen, Dongyu


A Comprehensive Dataset and Automated Pipeline for Nailfold Capillary Analysis

arXiv.org Artificial Intelligence

The introduction of machine learning marks a pivotal shift, presenting Nailfold capillaroscopy is a well-established method for automated medical image analysis as a promising alternative assessing health conditions, but the untapped potential of automated due to its higher accuracy compared to traditional image medical image analysis using machine learning remains processing algorithms[5]. Recent studies have attempted to despite recent advancements. In this groundbreaking use single deep-learning models for tasks such as nailfold study, we present a pioneering effort in constructing a comprehensive capillary segmentation[4, 8], measurement of capillary size dataset--321 images, 219 videos, 68 clinic reports, and density[5], and white cell counting[9]. Despite notable with expert annotations--that serves as a crucial resource achievements, the untapped potential of automated medical for training deep-learning models. Leveraging this image analysis persists due to the urgent need for annotated dataset, we propose an end-to-end nailfold capillary analysis and extensive datasets essential for effective training and pipeline capable of automatically detecting and measuring diverse fine-tuning deep neural networks.