Chen, Daphne
Learning to Cooperate with Humans using Generative Agents
Liang, Yancheng, Chen, Daphne, Gupta, Abhishek, Du, Simon S., Jaques, Natasha
Training agents that can coordinate zero-shot with humans is a key mission in multi-agent reinforcement learning (MARL). Current algorithms focus on training simulated human partner policies which are then used to train a Cooperator agent. The simulated human is produced either through behavior cloning over a dataset of human cooperation behavior, or by using MARL to create a population of simulated agents. However, these approaches often struggle to produce a Cooperator that can coordinate well with real humans, since the simulated humans fail to cover the diverse strategies and styles employed by people in the real world. We show \emph{learning a generative model of human partners} can effectively address this issue. Our model learns a latent variable representation of the human that can be regarded as encoding the human's unique strategy, intention, experience, or style. This generative model can be flexibly trained from any (human or neural policy) agent interaction data. By sampling from the latent space, we can use the generative model to produce different partners to train Cooperator agents. We evaluate our method -- \textbf{G}enerative \textbf{A}gent \textbf{M}odeling for \textbf{M}ulti-agent \textbf{A}daptation (GAMMA) -- on Overcooked, a challenging cooperative cooking game that has become a standard benchmark for zero-shot coordination. We conduct an evaluation with real human teammates, and the results show that GAMMA consistently improves performance, whether the generative model is trained on simulated populations or human datasets. Further, we propose a method for posterior sampling from the generative model that is biased towards the human data, enabling us to efficiently improve performance with only a small amount of expensive human interaction data.
DROID: A Large-Scale In-The-Wild Robot Manipulation Dataset
Khazatsky, Alexander, Pertsch, Karl, Nair, Suraj, Balakrishna, Ashwin, Dasari, Sudeep, Karamcheti, Siddharth, Nasiriany, Soroush, Srirama, Mohan Kumar, Chen, Lawrence Yunliang, Ellis, Kirsty, Fagan, Peter David, Hejna, Joey, Itkina, Masha, Lepert, Marion, Ma, Yecheng Jason, Miller, Patrick Tree, Wu, Jimmy, Belkhale, Suneel, Dass, Shivin, Ha, Huy, Jain, Arhan, Lee, Abraham, Lee, Youngwoon, Memmel, Marius, Park, Sungjae, Radosavovic, Ilija, Wang, Kaiyuan, Zhan, Albert, Black, Kevin, Chi, Cheng, Hatch, Kyle Beltran, Lin, Shan, Lu, Jingpei, Mercat, Jean, Rehman, Abdul, Sanketi, Pannag R, Sharma, Archit, Simpson, Cody, Vuong, Quan, Walke, Homer Rich, Wulfe, Blake, Xiao, Ted, Yang, Jonathan Heewon, Yavary, Arefeh, Zhao, Tony Z., Agia, Christopher, Baijal, Rohan, Castro, Mateo Guaman, Chen, Daphne, Chen, Qiuyu, Chung, Trinity, Drake, Jaimyn, Foster, Ethan Paul, Gao, Jensen, Herrera, David Antonio, Heo, Minho, Hsu, Kyle, Hu, Jiaheng, Jackson, Donovon, Le, Charlotte, Li, Yunshuang, Lin, Kevin, Lin, Roy, Ma, Zehan, Maddukuri, Abhiram, Mirchandani, Suvir, Morton, Daniel, Nguyen, Tony, O'Neill, Abigail, Scalise, Rosario, Seale, Derick, Son, Victor, Tian, Stephen, Tran, Emi, Wang, Andrew E., Wu, Yilin, Xie, Annie, Yang, Jingyun, Yin, Patrick, Zhang, Yunchu, Bastani, Osbert, Berseth, Glen, Bohg, Jeannette, Goldberg, Ken, Gupta, Abhinav, Gupta, Abhishek, Jayaraman, Dinesh, Lim, Joseph J, Malik, Jitendra, Martín-Martín, Roberto, Ramamoorthy, Subramanian, Sadigh, Dorsa, Song, Shuran, Wu, Jiajun, Yip, Michael C., Zhu, Yuke, Kollar, Thomas, Levine, Sergey, Finn, Chelsea
The creation of large, diverse, high-quality robot manipulation datasets is an important stepping stone on the path toward more capable and robust robotic manipulation policies. However, creating such datasets is challenging: collecting robot manipulation data in diverse environments poses logistical and safety challenges and requires substantial investments in hardware and human labour. As a result, even the most general robot manipulation policies today are mostly trained on data collected in a small number of environments with limited scene and task diversity. In this work, we introduce DROID (Distributed Robot Interaction Dataset), a diverse robot manipulation dataset with 76k demonstration trajectories or 350 hours of interaction data, collected across 564 scenes and 84 tasks by 50 data collectors in North America, Asia, and Europe over the course of 12 months. We demonstrate that training with DROID leads to policies with higher performance and improved generalization ability. We open source the full dataset, policy learning code, and a detailed guide for reproducing our robot hardware setup.