Goto

Collaborating Authors

 Chen, Chaochao


Federated Learning for Short Text Clustering

arXiv.org Artificial Intelligence

Short text clustering has been popularly studied for its significance in mining valuable insights from many short texts. In this paper, we focus on the federated short text clustering (FSTC) problem, i.e., clustering short texts that are distributed in different clients, which is a realistic problem under privacy requirements. Compared with the centralized short text clustering problem that short texts are stored on a central server, the FSTC problem has not been explored yet. To fill this gap, we propose a Federated Robust Short Text Clustering (FSTC) framework. FSTC includes two main modules, i.e., robust short text clustering module and federated cluster center aggregation module. The robust short text clustering module aims to train an effective short text clustering model with local data in each client. We innovatively combine optimal transport to generate pseudo-labels with Gaussian-uniform mixture model to ensure the reliability of the pseudo-supervised data. The federated cluster center aggregation module aims to exchange knowledge across clients without sharing local raw data in an efficient way. The server aggregates the local cluster centers from different clients and then sends the global centers back to all clients in each communication round. Our empirical studies on three short text clustering datasets demonstrate that FSTC significantly outperforms the federated short text clustering baselines.


Making Users Indistinguishable: Attribute-wise Unlearning in Recommender Systems

arXiv.org Artificial Intelligence

With the growing privacy concerns in recommender systems, recommendation unlearning, i.e., forgetting the impact of specific learned targets, is getting increasing attention. Existing studies predominantly use training data, i.e., model inputs, as the unlearning target. However, we find that attackers can extract private information, i.e., gender, race, and age, from a trained model even if it has not been explicitly encountered during training. We name this unseen information as attribute and treat it as the unlearning target. To protect the sensitive attribute of users, Attribute Unlearning (AU) aims to degrade attacking performance and make target attributes indistinguishable. In this paper, we focus on a strict but practical setting of AU, namely Post-Training Attribute Unlearning (PoT-AU), where unlearning can only be performed after the training of the recommendation model is completed. To address the PoT-AU problem in recommender systems, we design a two-component loss function that consists of i) distinguishability loss: making attribute labels indistinguishable from attackers, and ii) regularization loss: preventing drastic changes in the model that result in a negative impact on recommendation performance. Specifically, we investigate two types of distinguishability measurements, i.e., user-to-user and distribution-to-distribution. We use the stochastic gradient descent algorithm to optimize our proposed loss. Extensive experiments on three real-world datasets demonstrate the effectiveness of our proposed methods.


In-processing User Constrained Dominant Sets for User-Oriented Fairness in Recommender Systems

arXiv.org Artificial Intelligence

Recommender systems are typically biased toward a small group of users, leading to severe unfairness in recommendation performance, i.e., User-Oriented Fairness (UOF) issue. The existing research on UOF is limited and fails to deal with the root cause of the UOF issue: the learning process between advantaged and disadvantaged users is unfair. To tackle this issue, we propose an In-processing User Constrained Dominant Sets (In-UCDS) framework, which is a general framework that can be applied to any backbone recommendation model to achieve user-oriented fairness. We split In-UCDS into two stages, i.e., the UCDS modeling stage and the in-processing training stage. In the UCDS modeling stage, for each disadvantaged user, we extract a constrained dominant set (a user cluster) containing some advantaged users that are similar to it. In the in-processing training stage, we move the representations of disadvantaged users closer to their corresponding cluster by calculating a fairness loss. By combining the fairness loss with the original backbone model loss, we address the UOF issue and maintain the overall recommendation performance simultaneously. Comprehensive experiments on three real-world datasets demonstrate that In-UCDS outperforms the state-of-the-art methods, leading to a fairer model with better overall recommendation performance.


Defending Label Inference Attacks in Split Learning under Regression Setting

arXiv.org Artificial Intelligence

As a privacy-preserving method for implementing Vertical Federated Learning, Split Learning has been extensively researched. However, numerous studies have indicated that the privacy-preserving capability of Split Learning is insufficient. In this paper, we primarily focus on label inference attacks in Split Learning under regression setting, which are mainly implemented through the gradient inversion method. To defend against label inference attacks, we propose Random Label Extension (RLE), where labels are extended to obfuscate the label information contained in the gradients, thereby preventing the attacker from utilizing gradients to train an attack model that can infer the original labels. To further minimize the impact on the original task, we propose Model-based adaptive Label Extension (MLE), where original labels are preserved in the extended labels and dominate the training process. The experimental results show that compared to the basic defense methods, our proposed defense methods can significantly reduce the attack model's performance while preserving the original task's performance.


Joint Local Relational Augmentation and Global Nash Equilibrium for Federated Learning with Non-IID Data

arXiv.org Artificial Intelligence

Federated learning (FL) is a distributed machine learning paradigm that needs collaboration between a server and a series of clients with decentralized data. To make FL effective in real-world applications, existing work devotes to improving the modeling of decentralized data with non-independent and identical distributions (non-IID). In non-IID settings, there are intra-client inconsistency that comes from the imbalanced data modeling, and inter-client inconsistency among heterogeneous client distributions, which not only hinders sufficient representation of the minority data, but also brings discrepant model deviations. However, previous work overlooks to tackle the above two coupling inconsistencies together. In this work, we propose FedRANE, which consists of two main modules, i.e., local relational augmentation (LRA) and global Nash equilibrium (GNE), to resolve intra- and inter-client inconsistency simultaneously. Specifically, in each client, LRA mines the similarity relations among different data samples and enhances the minority sample representations with their neighbors using attentive message passing. In server, GNE reaches an agreement among inconsistent and discrepant model deviations from clients to server, which encourages the global model to update in the direction of global optimum without breaking down the clients optimization toward their local optimums. We conduct extensive experiments on four benchmark datasets to show the superiority of FedRANE in enhancing the performance of FL with non-IID data.


Decentralized Graph Neural Network for Privacy-Preserving Recommendation

arXiv.org Artificial Intelligence

Building a graph neural network (GNN)-based recommender system without violating user privacy proves challenging. Existing methods can be divided into federated GNNs and decentralized GNNs. But both methods have undesirable effects, i.e., low communication efficiency and privacy leakage. This paper proposes DGREC, a novel decentralized GNN for privacy-preserving recommendations, where users can choose to publicize their interactions. It includes three stages, i.e., graph construction, local gradient calculation, and global gradient passing. The first stage builds a local inner-item hypergraph for each user and a global inter-user graph. The second stage models user preference and calculates gradients on each local device. The third stage designs a local differential privacy mechanism named secure gradient-sharing, which proves strong privacy-preserving of users' private data. We conduct extensive experiments on three public datasets to validate the consistent superiority of our framework.


Freshness or Accuracy, Why Not Both? Addressing Delayed Feedback via Dynamic Graph Neural Networks

arXiv.org Artificial Intelligence

The delayed feedback problem is one of the most pressing challenges in predicting the conversion rate since users' conversions are always delayed in online commercial systems. Although new data are beneficial for continuous training, without complete feedback information, i.e., conversion labels, training algorithms may suffer from overwhelming fake negatives. Existing methods tend to use multitask learning or design data pipelines to solve the delayed feedback problem. However, these methods have a trade-off between data freshness and label accuracy. In this paper, we propose Delayed Feedback Modeling by Dynamic Graph Neural Network (DGDFEM). It includes three stages, i.e., preparing a data pipeline, building a dynamic graph, and training a CVR prediction model. In the model training, we propose a novel graph convolutional method named HLGCN, which leverages both high-pass and low-pass filters to deal with conversion and non-conversion relationships. The proposed method achieves both data freshness and label accuracy. We conduct extensive experiments on three industry datasets, which validate the consistent superiority of our method.


HyperFed: Hyperbolic Prototypes Exploration with Consistent Aggregation for Non-IID Data in Federated Learning

arXiv.org Artificial Intelligence

Federated learning (FL) collaboratively models user data in a decentralized way. However, in the real world, non-identical and independent data distributions (non-IID) among clients hinder the performance of FL due to three issues, i.e., (1) the class statistics shifting, (2) the insufficient hierarchical information utilization, and (3) the inconsistency in aggregating clients. To address the above issues, we propose HyperFed which contains three main modules, i.e., hyperbolic prototype Tammes initialization (HPTI), hyperbolic prototype learning (HPL), and consistent aggregation (CA). Firstly, HPTI in the server constructs uniformly distributed and fixed class prototypes, and shares them with clients to match class statistics, further guiding consistent feature representation for local clients. Secondly, HPL in each client captures the hierarchical information in local data with the supervision of shared class prototypes in the hyperbolic model space. Additionally, CA in the server mitigates the impact of the inconsistent deviations from clients to server. Extensive studies of four datasets prove that HyperFed is effective in enhancing the performance of FL under the non-IID set.


Federated Large Language Model: A Position Paper

arXiv.org Artificial Intelligence

Large scale language models (LLM) have received significant attention and found diverse applications across various domains, but their development encounters challenges in real-world scenarios. These challenges arise due to the scarcity of public domain data availability and the need to maintain privacy with respect to private domain data. To address these issues, federated learning (FL) has emerged as a promising technology that enables collaborative training of shared models while preserving decentralized data. We propose the concept of federated LLM, which comprises three key components, i.e., federated LLM pre-training, federated LLM fine-tuning, and federated LLM prompt engineering. For each component, we discuss its advantage over traditional LLM training methods and propose specific engineering strategies for implementation. Furthermore, we explore the novel challenges introduced by the integration of FL and LLM. We analyze existing solutions and identify potential obstacles faced by these solutions within the context of federated LLM.


Federated Unlearning via Active Forgetting

arXiv.org Artificial Intelligence

The increasing concerns regarding the privacy of machine learning models have catalyzed the exploration of machine unlearning, i.e., a process that removes the influence of training data on machine learning models. This concern also arises in the realm of federated learning, prompting researchers to address the federated unlearning problem. However, federated unlearning remains challenging. Existing unlearning methods can be broadly categorized into two approaches, i.e., exact unlearning and approximate unlearning. Firstly, implementing exact unlearning, which typically relies on the partition-aggregation framework, in a distributed manner does not improve time efficiency theoretically. Secondly, existing federated (approximate) unlearning methods suffer from imprecise data influence estimation, significant computational burden, or both. To this end, we propose a novel federated unlearning framework based on incremental learning, which is independent of specific models and federated settings. Our framework differs from existing federated unlearning methods that rely on approximate retraining or data influence estimation. Instead, we leverage new memories to overwrite old ones, imitating the process of \textit{active forgetting} in neurology. Specifically, the model, intended to unlearn, serves as a student model that continuously learns from randomly initiated teacher models. To preserve catastrophic forgetting of non-target data, we utilize elastic weight consolidation to elastically constrain weight change. Extensive experiments on three benchmark datasets demonstrate the efficiency and effectiveness of our proposed method. The result of backdoor attacks demonstrates that our proposed method achieves satisfying completeness.