Chen, Chao
MoMa-Pos: Where Should Mobile Manipulators Stand in Cluttered Environment Before Task Execution?
Shao, Beichen, Ding, Yan, Wang, Xingchen, Xie, Xuefeng, Gu, Fuqiang, Luo, Jun, Chen, Chao
Mobile manipulators always need to determine feasible base positions prior to carrying out navigation-manipulation tasks. Real-world environments are often cluttered with various furniture, obstacles, and dozens of other objects. Efficiently computing base positions poses a challenge. In this work, we introduce a framework named MoMa-Pos to address this issue. MoMa-Pos first learns to predict a small set of objects that, taken together, would be sufficient for finding base positions using a graph embedding architecture. MoMa-Pos then calculates standing positions by considering furniture structures, robot models, and obstacles comprehensively. We have extensively evaluated the proposed MoMa-Pos across different settings (e.g., environment and algorithm parameters) and with various mobile manipulators. Our empirical results show that MoMa-Pos demonstrates remarkable effectiveness and efficiency in its performance, surpassing the methods in the literature. %, but also is adaptable to cluttered environments and different robot models. Supplementary material can be found at \url{https://yding25.com/MoMa-Pos}.
Task-Agnostic Detector for Insertion-Based Backdoor Attacks
Lyu, Weimin, Lin, Xiao, Zheng, Songzhu, Pang, Lu, Ling, Haibin, Jha, Susmit, Chen, Chao
Textual backdoor attacks pose significant security threats. Current detection approaches, typically relying on intermediate feature representation or reconstructing potential triggers, are task-specific and less effective beyond sentence classification, struggling with tasks like question answering and named entity recognition. We introduce TABDet (Task-Agnostic Backdoor Detector), a pioneering task-agnostic method for backdoor detection. TABDet leverages final layer logits combined with an efficient pooling technique, enabling unified logit representation across three prominent NLP tasks. TABDet can jointly learn from diverse task-specific models, demonstrating superior detection efficacy over traditional task-specific methods.
Robust Conformal Prediction under Distribution Shift via Physics-Informed Structural Causal Model
Xu, Rui, Sun, Yue, Chen, Chao, Venkitasubramaniam, Parv, Xie, Sihong
Uncertainty is critical to reliable decision-making with machine learning. Conformal prediction (CP) handles uncertainty by predicting a set on a test input, hoping the set to cover the true label with at least $(1-\alpha)$ confidence. This coverage can be guaranteed on test data even if the marginal distributions $P_X$ differ between calibration and test datasets. However, as it is common in practice, when the conditional distribution $P_{Y|X}$ is different on calibration and test data, the coverage is not guaranteed and it is essential to measure and minimize the coverage loss under distributional shift at \textit{all} possible confidence levels. To address these issues, we upper bound the coverage difference at all levels using the cumulative density functions of calibration and test conformal scores and Wasserstein distance. Inspired by the invariance of physics across data distributions, we propose a physics-informed structural causal model (PI-SCM) to reduce the upper bound. We validated that PI-SCM can improve coverage robustness along confidence level and test domain on a traffic speed prediction task and an epidemic spread task with multiple real-world datasets.
Deep Learning for Trajectory Data Management and Mining: A Survey and Beyond
Chen, Wei, Liang, Yuxuan, Zhu, Yuanshao, Chang, Yanchuan, Luo, Kang, Wen, Haomin, Li, Lei, Yu, Yanwei, Wen, Qingsong, Chen, Chao, Zheng, Kai, Gao, Yunjun, Zhou, Xiaofang, Zheng, Yu
Trajectory computing is a pivotal domain encompassing trajectory data management and mining, garnering widespread attention due to its crucial role in various practical applications such as location services, urban traffic, and public safety. Traditional methods, focusing on simplistic spatio-temporal features, face challenges of complex calculations, limited scalability, and inadequate adaptability to real-world complexities. In this paper, we present a comprehensive review of the development and recent advances in deep learning for trajectory computing (DL4Traj). We first define trajectory data and provide a brief overview of widely-used deep learning models. Systematically, we explore deep learning applications in trajectory management (pre-processing, storage, analysis, and visualization) and mining (trajectory-related forecasting, trajectory-related recommendation, trajectory classification, travel time estimation, anomaly detection, and mobility generation). Notably, we encapsulate recent advancements in Large Language Models (LLMs) that hold the potential to augment trajectory computing. Additionally, we summarize application scenarios, public datasets, and toolkits. Finally, we outline current challenges in DL4Traj research and propose future directions. Relevant papers and open-source resources have been collated and are continuously updated at: \href{https://github.com/yoshall/Awesome-Trajectory-Computing}{DL4Traj Repo}.
Gradient-based Fuzzy System Optimisation via Automatic Differentiation -- FuzzyR as a Use Case
Chen, Chao, Wagner, Christian, Garibaldi, Jonathan M.
Since their introduction, fuzzy sets and systems have become an important area of research known for its versatility in modelling, knowledge representation and reasoning, and increasingly its potential within the context explainable AI. While the applications of fuzzy systems are diverse, there has been comparatively little advancement in their design from a machine learning perspective. In other words, while representations such as neural networks have benefited from a boom in learning capability driven by an increase in computational performance in combination with advances in their training mechanisms and available tool, in particular gradient descent, the impact on fuzzy system design has been limited. In this paper, we discuss gradient-descent-based optimisation of fuzzy systems, focussing in particular on automatic differentiation -- crucial to neural network learning -- with a view to free fuzzy system designers from intricate derivative computations, allowing for more focus on the functional and explainability aspects of their design. As a starting point, we present a use case in FuzzyR which demonstrates how current fuzzy inference system implementations can be adjusted to leverage powerful features of automatic differentiation tools sets, discussing its potential for the future of fuzzy system design.
Pheno-Robot: An Auto-Digital Modelling System for In-Situ Phenotyping in the Field
Pan, Yaoqiang, Hu, Kewei, Liu, Tianhao, Chen, Chao, Kang, Hanwen
Accurate reconstruction of plant models for phenotyping analysis is critical for optimising sustainable agricultural practices in precision agriculture. Traditional laboratory-based phenotyping, while valuable, falls short of understanding how plants grow under uncontrolled conditions. Robotic technologies offer a promising avenue for large-scale, direct phenotyping in real-world environments. This study explores the deployment of emerging robotics and digital technology in plant phenotyping to improve performance and efficiency. Three critical functional modules: environmental understanding, robotic motion planning, and in-situ phenotyping, are introduced to automate the entire process. Experimental results demonstrate the effectiveness of the system in agricultural environments. The pheno-robot system autonomously collects high-quality data by navigating around plants. In addition, the in-situ modelling model reconstructs high-quality plant models from the data collected by the robot. The developed robotic system shows high efficiency and robustness, demonstrating its potential to advance plant science in real-world agricultural environments.
Sparse-VQ Transformer: An FFN-Free Framework with Vector Quantization for Enhanced Time Series Forecasting
Zhao, Yanjun, Zhou, Tian, Chen, Chao, Sun, Liang, Qian, Yi, Jin, Rong
Time series analysis is vital for numerous applications, and transformers have become increasingly prominent in this domain. Leading methods customize the transformer architecture from NLP and CV, utilizing a patching technique to convert continuous signals into segments. Yet, time series data are uniquely challenging due to significant distribution shifts and intrinsic noise levels. To address these two challenges,we introduce the Sparse Vector Quantized FFN-Free Transformer (Sparse-VQ). Our methodology capitalizes on a sparse vector quantization technique coupled with Reverse Instance Normalization (RevIN) to reduce noise impact and capture sufficient statistics for forecasting, serving as an alternative to the Feed-Forward layer (FFN) in the transformer architecture. Our FFN-free approach trims the parameter count, enhancing computational efficiency and reducing overfitting. Through evaluations across ten benchmark datasets, including the newly introduced CAISO dataset, Sparse-VQ surpasses leading models with a 7.84% and 4.17% decrease in MAE for univariate and multivariate time series forecasting, respectively. Moreover, it can be seamlessly integrated with existing transformer-based models to elevate their performance.
FusionSF: Fuse Heterogeneous Modalities in a Vector Quantized Framework for Robust Solar Power Forecasting
Ma, Ziqing, Wang, Wenwei, Zhou, Tian, Chen, Chao, Peng, Bingqing, Sun, Liang, Jin, Rong
Accurate solar power forecasting is crucial to integrate photovoltaic plants into the electric grid, schedule and secure the power grid safety. This problem becomes more demanding for those newly installed solar plants which lack sufficient data. Current research predominantly relies on historical solar power data or numerical weather prediction in a single-modality format, ignoring the complementary information provided in different modalities. In this paper, we propose a multi-modality fusion framework to integrate historical power data, numerical weather prediction, and satellite images, significantly improving forecast performance. We introduce a vector quantized framework that aligns modalities with varying information densities, striking a balance between integrating sufficient information and averting model overfitting. Our framework demonstrates strong zero-shot forecasting capability, which is especially useful for those newly installed plants. Moreover, we collect and release a multi-modal solar power (MMSP) dataset from real-world plants to further promote the research of multi-modal solar forecasting algorithms. Our extensive experiments show that our model not only operates with robustness but also boosts accuracy in both zero-shot forecasting and scenarios rich with training data, surpassing leading models. We have incorporated it into our eForecaster platform and deployed it for more than 300 solar plants with a capacity of over 15GW.
SVQ: Sparse Vector Quantization for Spatiotemporal Forecasting
Chen, Chao, Zhou, Tian, Zhao, Yanjun, Liu, Hui, Sun, Liang, Jin, Rong
Spatio-temporal forecasting, pivotal in numerous fields, hinges on the delicate equilibrium between isolating nuanced patterns and sifting out noise. To tackle this, we introduce Sparse Regression-based Vector Quantization (SVQ), a novel technique that leverages sparse regression for succinct representation, an approach theoretically and practically favored over classical clustering-based vector quantization methods. This approach preserves critical details from the original vectors using a regression model while filtering out noise via sparse design. Moreover, we approximate the sparse regression process using a blend of a two-layer MLP and an extensive codebook. This approach not only substantially cuts down on computational costs but also grants SVQ differentiability and training simplicity, resulting in a notable enhancement of performance. Our empirical studies on five spatial-temporal benchmark datasets demonstrate that SVQ achieves state-of-the-art results. Specifically, on the WeatherBench-S temperature dataset, SVQ improves the top baseline by 7.9%. In video prediction benchmarks-Human, KTH, and KittiCaltech-it reduces MAE by an average of 9.4% and improves image quality by 17.3% (LPIPS).
An invariance constrained deep learning network for PDE discovery
Chen, Chao, Li, Hui, Jin, Xiaowei
The discovery of partial differential equations (PDEs) from datasets has attracted increased attention. However, the discovery of governing equations from sparse data with high noise is still very challenging due to the difficulty of derivatives computation and the disturbance of noise. Moreover, the selection principles for the candidate library to meet physical laws need to be further studied. The invariance is one of the fundamental laws for governing equations. In this study, we propose an invariance constrained deep learning network (ICNet) for the discovery of PDEs. Considering that temporal and spatial translation invariance (Galilean invariance) is a fundamental property of physical laws, we filter the candidates that cannot meet the requirement of the Galilean transformations. Subsequently, we embedded the fixed and possible terms into the loss function of neural network, significantly countering the effect of sparse data with high noise. Then, by filtering out redundant terms without fixing learnable parameters during the training process, the governing equations discovered by the ICNet method can effectively approximate the real governing equations. We select the 2D Burgers equation, the equation of 2D channel flow over an obstacle, and the equation of 3D intracranial aneurysm as examples to verify the superiority of the ICNet for fluid mechanics. Furthermore, we extend similar invariance methods to the discovery of wave equation (Lorentz Invariance) and verify it through Single and Coupled Klein-Gordon equation. The results show that the ICNet method with physical constraints exhibits excellent performance in governing equations discovery from sparse and noisy data.