Chen, Chao
Constants of motion network revisited
Fang, Wenqi, Chen, Chao, Yang, Yongkui, Wang, Zheng
Discovering constants of motion is meaningful in helping understand the dynamical systems, but inevitably needs proficient mathematical skills and keen analytical capabilities. With the prevalence of deep learning, methods employing neural networks, such as Constant Of Motion nETwork (COMET), are promising in handling this scientific problem. Although the COMET method can produce better predictions on dynamics by exploiting the discovered constants of motion, there is still plenty of room to sharpen it. In this paper, we propose a novel neural network architecture, built using the singular-value-decomposition (SVD) technique, and a two-phase training algorithm to improve the performance of COMET. Extensive experiments show that our approach not only retains the advantages of COMET, such as applying to non-Hamiltonian systems and indicating the number of constants of motion, but also can be more lightweight and noise-robust than COMET.
Wasserstein-regularized Conformal Prediction under General Distribution Shift
Xu, Rui, Chen, Chao, Sun, Yue, Venkitasubramaniam, Parvathinathan, Xie, Sihong
Conformal prediction yields a prediction set with guaranteed $1-\alpha$ coverage of the true target under the i.i.d. assumption, which may not hold and lead to a gap between $1-\alpha$ and the actual coverage. Prior studies bound the gap using total variation distance, which cannot identify the gap changes under distribution shift at a given $\alpha$. Besides, existing methods are mostly limited to covariate shift,while general joint distribution shifts are more common in practice but less researched.In response, we first propose a Wasserstein distance-based upper bound of the coverage gap and analyze the bound using probability measure pushforwards between the shifted joint data and conformal score distributions, enabling a separation of the effect of covariate and concept shifts over the coverage gap. We exploit the separation to design an algorithm based on importance weighting and regularized representation learning (WR-CP) to reduce the Wasserstein bound with a finite-sample error bound.WR-CP achieves a controllable balance between conformal prediction accuracy and efficiency. Experiments on six datasets prove that WR-CP can reduce coverage gaps to $3.1\%$ across different confidence levels and outputs prediction sets 38$\%$ smaller than the worst-case approach on average.
Enhancing Graph Representation Learning with Localized Topological Features
Yan, Zuoyu, Zhao, Qi, Ye, Ze, Ma, Tengfei, Gao, Liangcai, Tang, Zhi, Wang, Yusu, Chen, Chao
Representation learning on graphs is a fundamental problem that can be crucial in various tasks. Graph neural networks, the dominant approach for graph representation learning, are limited in their representation power. Therefore, it can be beneficial to explicitly extract and incorporate high-order topological and geometric information into these models. In this paper, we propose a principled approach to extract the rich connectivity information of graphs based on the theory of persistent homology. Our method utilizes the topological features to enhance the representation learning of graph neural networks and achieve state-of-the-art performance on various node classification and link prediction benchmarks. We also explore the option of end-to-end learning of the topological features, i.e., treating topological computation as a differentiable operator during learning. Our theoretical analysis and empirical study provide insights and potential guidelines for employing topological features in graph learning tasks.
Efficient Event-based Semantic Segmentation with Spike-driven Lightweight Transformer-based Networks
Zhu, Xiaxin, Guo, Fangming, Long, Xianlei, Gu, Qingyi, Chen, Chao, Gu, Fuqiang
Event-based semantic segmentation has great potential in autonomous driving and robotics due to the advantages of event cameras, such as high dynamic range, low latency, and low power cost. Unfortunately, current artificial neural network (ANN)-based segmentation methods suffer from high computational demands, the requirements for image frames, and massive energy consumption, limiting their efficiency and application on resource-constrained edge/mobile platforms. To address these problems, we introduce SLTNet, a spike-driven lightweight transformer-based network designed for event-based semantic segmentation. Specifically, SLTNet is built on efficient spike-driven convolution blocks (SCBs) to extract rich semantic features while reducing the model's parameters. Then, to enhance the long-range contextural feature interaction, we propose novel spike-driven transformer blocks (STBs) with binary mask operations. Based on these basic blocks, SLTNet employs a high-efficiency single-branch architecture while maintaining the low energy consumption of the Spiking Neural Network (SNN). Finally, extensive experiments on DDD17 and DSEC-Semantic datasets demonstrate that SLTNet outperforms state-of-the-art (SOTA) SNN-based methods by at least 7.30% and 3.30% mIoU, respectively, with extremely 5.48x lower energy consumption and 1.14x faster inference speed.
ROUTE: Robust Multitask Tuning and Collaboration for Text-to-SQL
Qin, Yang, Chen, Chao, Fu, Zhihang, Chen, Ze, Peng, Dezhong, Hu, Peng, Ye, Jieping
Despite the significant advancements in Text-to-SQL (Text2SQL) facilitated by large language models (LLMs), the latest state-of-the-art techniques are still trapped in the in-context learning of closed-source LLMs (e.g., GPT-4), which limits their applicability in open scenarios. Our approach begins with multi-task supervised fine-tuning (SFT) using various synthetic training data related to SQL generation. Unlike existing SFT-based Text2SQL methods, we introduced several additional SFT tasks, including schema linking, noise correction, and continuation writing. Engaging in a variety of SQL generation tasks enhances the model's understanding of SQL syntax and improves its ability to generate high-quality SQL queries. Additionally, inspired by the collaborative modes of LLM agents, we introduce a Multitask Collaboration Prompting (MCP) strategy. This strategy leverages collaboration across several SQL-related tasks to reduce hallucinations during SQL generation, thereby maximizing the potential of enhancing Text2SQL performance through explicit multitask capabilities. Extensive experiments and in-depth analyses have been performed on eight open-source LLMs and five widely-used benchmarks. The results demonstrate that our proposal outperforms the latest Text2SQL methods and yields promising performance. The code and data are available here. Text2SQL has emerged as a popular and practical technology for question answering based on largescale databases, serving as a crucial link between natural language and database systems (Zhang et al., 2024). Recently, Large Language Models (LLMs) have proven to be an effective solution in Text2SQL (Pourreza & Rafiei, 2024a).
FedAH: Aggregated Head for Personalized Federated Learning
Zhou, Pengzhan, He, Yuepeng, Zhai, Yijun, Gao, Kaixin, Chen, Chao, Qin, Zhida, Zhang, Chong, Guo, Songtao
Recently, Federated Learning (FL) has gained popularity for its privacy-preserving and collaborative learning capabilities. Personalized Federated Learning (PFL), building upon FL, aims to address the issue of statistical heterogeneity and achieve personalization. Personalized-head-based PFL is a common and effective PFL method that splits the model into a feature extractor and a head, where the feature extractor is collaboratively trained and shared, while the head is locally trained and not shared. However, retaining the head locally, although achieving personalization, prevents the model from learning global knowledge in the head, thus affecting the performance of the personalized model. To solve this problem, we propose a novel PFL method called Federated Learning with Aggregated Head (FedAH), which initializes the head with an Aggregated Head at each iteration. The key feature of FedAH is to perform element-level aggregation between the local model head and the global model head to introduce global information from the global model head. To evaluate the effectiveness of FedAH, we conduct extensive experiments on five benchmark datasets in the fields of computer vision and natural language processing. FedAH outperforms ten state-of-the-art FL methods in terms of test accuracy by 2.87%. Additionally, FedAH maintains its advantage even in scenarios where some clients drop out unexpectedly. Our code is open-accessed at https://github.com/heyuepeng/FedAH.
A Multimodal Approach Combining Structural and Cross-domain Textual Guidance for Weakly Supervised OCT Segmentation
Yang, Jiaqi, Mehta, Nitish, Hu, Xiaoling, Chen, Chao, Tsai, Chia-Ling
Accurate segmentation of Optical Coherence Tomography (OCT) images is crucial for diagnosing and monitoring retinal diseases. However, the labor-intensive nature of pixel-level annotation limits the scalability of supervised learning with large datasets. Weakly Supervised Semantic Segmentation (WSSS) provides a promising alternative by leveraging image-level labels. In this study, we propose a novel WSSS approach that integrates structural guidance with text-driven strategies to generate high-quality pseudo labels, significantly improving segmentation performance. In terms of visual information, our method employs two processing modules that exchange raw image features and structural features from OCT images, guiding the model to identify where lesions are likely to occur. In terms of textual information, we utilize large-scale pretrained models from cross-domain sources to implement label-informed textual guidance and synthetic descriptive integration with two textual processing modules that combine local semantic features with consistent synthetic descriptions. By fusing these visual and textual components within a multimodal framework, our approach enhances lesion localization accuracy. Experimental results on three OCT datasets demonstrate that our method achieves state-of-the-art performance, highlighting its potential to improve diagnostic accuracy and efficiency in medical imaging.
A Theoretical Study of Neural Network Expressive Power via Manifold Topology
Yao, Jiachen, Goswami, Mayank, Chen, Chao
A prevalent assumption regarding real-world data is that it lies on or close to a low-dimensional manifold. When deploying a neural network on data manifolds, the required size, i.e., the number of neurons of the network, heavily depends on the intricacy of the underlying latent manifold. While significant advancements have been made in understanding the geometric attributes of manifolds, it's essential to recognize that topology, too, is a fundamental characteristic of manifolds. In this study, we investigate network expressive power in terms of the latent data manifold. Integrating both topological and geometric facets of the data manifold, we present a size upper bound of ReLU neural networks.
BestMan: A Modular Mobile Manipulator Platform for Embodied AI with Unified Simulation-Hardware APIs
Yang, Kui, Cao, Nieqing, Ding, Yan, Chen, Chao
Embodied Artificial Intelligence (Embodied AI) emphasizes agents' ability to perceive, understand, and act in physical environments. Simulation platforms play a crucial role in advancing this field by enabling the validation and optimization of algorithms. However, existing platforms face challenges such as multilevel technical integration complexity, insufficient modularity, interface heterogeneity, and adaptation to diverse hardware. We present BestMan, a simulation platform based on PyBullet, designed to address these issues. BestMan introduces an integrated multilevel skill chain for seamless coordination across perception, planning, and control; a highly modular architecture for flexible algorithm integration; unified interfaces for smooth simulation-to-reality transfer; and a hardware-agnostic approach for adapting to various mobile manipulator configurations. These features collectively simplify development and enhance platform expandability, making BestMan a valuable tool for Embodied AI research.
Long-Tailed Backdoor Attack Using Dynamic Data Augmentation Operations
Pang, Lu, Sun, Tao, Lyu, Weimin, Ling, Haibin, Chen, Chao
Recently, backdoor attack has become an increasing security threat to deep neural networks and drawn the attention of researchers. Backdoor attacks exploit vulnerabilities in third-party pretrained models during the training phase, enabling them to behave normally for clean samples and mispredict for samples with specific triggers. Existing backdoor attacks mainly focus on balanced datasets. However, real-world datasets often follow long-tailed distributions. In this paper, for the first time, we explore backdoor attack on such datasets. Specifically, we first analyze the influence of data imbalance on backdoor attack. Based on our analysis, we propose an effective backdoor attack named Dynamic Data Augmentation Operation (D$^2$AO). We design D$^2$AO selectors to select operations depending jointly on the class, sample type (clean vs. backdoored) and sample features. Meanwhile, we develop a trigger generator to generate sample-specific triggers. Through simultaneous optimization of the backdoored model and trigger generator, guided by dynamic data augmentation operation selectors, we achieve significant advancements. Extensive experiments demonstrate that our method can achieve the state-of-the-art attack performance while preserving the clean accuracy.