Goto

Collaborating Authors

 Chen, Cen


PrivacyRestore: Privacy-Preserving Inference in Large Language Models via Privacy Removal and Restoration

arXiv.org Artificial Intelligence

The widespread usage of online Large Language Models (LLMs) inference services has raised significant privacy concerns about the potential exposure of private information in user inputs to eavesdroppers or untrustworthy service providers. Existing privacy protection methods for LLMs suffer from insufficient privacy protection, performance degradation, or severe inference time overhead. In this paper, we propose PrivacyRestore to protect the privacy of user inputs during LLM inference. PrivacyRestore directly removes privacy spans in user inputs and restores privacy information via activation steering during inference. The privacy spans are encoded as restoration vectors. We propose Attention-aware Weighted Aggregation (AWA) which aggregates restoration vectors of all privacy spans in the input into a meta restoration vector. AWA not only ensures proper representation of all privacy spans but also prevents attackers from inferring the privacy spans from the meta restoration vector alone. This meta restoration vector, along with the query with privacy spans removed, is then sent to the server. The experimental results show that PrivacyRestore can protect private information while maintaining acceptable levels of performance and inference efficiency.


Online Analytic Exemplar-Free Continual Learning with Large Models for Imbalanced Autonomous Driving Task

arXiv.org Artificial Intelligence

In the field of autonomous driving, even a meticulously trained model can encounter failures when faced with unfamiliar sceanrios. One of these scenarios can be formulated as an online continual learning (OCL) problem. That is, data come in an online fashion, and models are updated according to these streaming data. Two major OCL challenges are catastrophic forgetting and data imbalance. To address these challenges, in this paper, we propose an Analytic Exemplar-Free Online Continual Learning (AEF-OCL). The AEF-OCL leverages analytic continual learning principles and employs ridge regression as a classifier for features extracted by a large backbone network. It solves the OCL problem by recursively calculating the analytical solution, ensuring an equalization between the continual learning and its joint-learning counterpart, and works without the need to save any used samples (i.e., exemplar-free). Additionally, we introduce a Pseudo-Features Generator (PFG) module that recursively estimates the deviation of real features. The PFG generates offset pseudo-features following a normal distribution, thereby addressing the data imbalance issue. Experimental results demonstrate that despite being an exemplar-free strategy, our method outperforms various methods on the autonomous driving SODA10M dataset. Source code is available at https://github.com/ZHUANGHP/Analytic-continual-learning.


G-ACIL: Analytic Learning for Exemplar-Free Generalized Class Incremental Learning

arXiv.org Artificial Intelligence

Class incremental learning (CIL) trains a network on sequential tasks with separated categories but suffers from catastrophic forgetting, where models quickly lose previously learned knowledge when acquiring new tasks. The generalized CIL (GCIL) aims to address the CIL problem in a more real-world scenario, where incoming data have mixed data categories and unknown sample size distribution, leading to intensified forgetting. Existing attempts for the GCIL either have poor performance, or invade data privacy by saving historical exemplars. To address this, in this paper, we propose an exemplar-free generalized analytic class incremental learning (G-ACIL). The G-ACIL adopts analytic learning (a gradient-free training technique), and delivers an analytical solution (i.e., closed-form) to the GCIL scenario. This solution is derived via decomposing the incoming data into exposed and unexposed classes, allowing an equivalence between the incremental learning and its joint training, i.e., the weight-invariant property. Such an equivalence is theoretically validated through matrix analysis tools, and hence contributes interpretability in GCIL. It is also empirically evidenced by experiments on various datasets and settings of GCIL. The results show that the G-ACIL exhibits leading performance with high robustness compared with existing competitive GCIL methods. Codes will be ready at \url{https://github.com/ZHUANGHP/Analytic-continual-learning}.


DS-AL: A Dual-Stream Analytic Learning for Exemplar-Free Class-Incremental Learning

arXiv.org Artificial Intelligence

Class-incremental learning (CIL) under an exemplar-free constraint has presented a significant challenge. Existing methods adhering to this constraint are prone to catastrophic forgetting, far more so than replay-based techniques that retain access to past samples. In this paper, to solve the exemplar-free CIL problem, we propose a Dual-Stream Analytic Learning (DS-AL) approach. The DS-AL contains a main stream offering an analytical (i.e., closed-form) linear solution, and a compensation stream improving the inherent under-fitting limitation due to adopting linear mapping. The main stream redefines the CIL problem into a Concatenated Recursive Least Squares (C-RLS) task, allowing an equivalence between the CIL and its joint-learning counterpart. The compensation stream is governed by a Dual-Activation Compensation (DAC) module. This module re-activates the embedding with a different activation function from the main stream one, and seeks fitting compensation by projecting the embedding to the null space of the main stream's linear mapping. Empirical results demonstrate that the DS-AL, despite being an exemplar-free technique, delivers performance comparable with or better than that of replay-based methods across various datasets, including CIFAR-100, ImageNet-100 and ImageNet-Full. Additionally, the C-RLS' equivalent property allows the DS-AL to execute CIL in a phase-invariant manner. This is evidenced by a never-before-seen 500-phase CIL ImageNet task, which performs on a level identical to a 5-phase one. Our codes are available at https://github.com/ZHUANGHP/Analytic-continual-learning.


REAL: Representation Enhanced Analytic Learning for Exemplar-free Class-incremental Learning

arXiv.org Artificial Intelligence

Exemplar-free class-incremental learning (EFCIL) aims to mitigate catastrophic forgetting in class-incremental learning without available historical data. Compared with its counterpart (replay-based CIL) that stores historical samples, the EFCIL suffers more from forgetting issues under the exemplar-free constraint. In this paper, inspired by the recently developed analytic learning (AL) based CIL, we propose a representation enhanced analytic learning (REAL) for EFCIL. The REAL constructs a dual-stream base pretraining (DS-BPT) and a representation enhancing distillation (RED) process to enhance the representation of the extractor. The DS-BPT pretrains model in streams of both supervised learning and self-supervised contrastive learning (SSCL) for base knowledge extraction. The RED process distills the supervised knowledge to the SSCL pretrained backbone and facilitates a subsequent AL-basd CIL that converts the CIL to a recursive least-square problem. Our method addresses the issue of insufficient discriminability in representations of unseen data caused by a frozen backbone in the existing AL-based CIL. Empirical results on various datasets including CIFAR-100, ImageNet-100 and ImageNet-1k, demonstrate that our REAL outperforms the state-of-the-arts in EFCIL, and achieves comparable or even more superior performance compared with the replay-based methods.


ConsistentEE: A Consistent and Hardness-Guided Early Exiting Method for Accelerating Language Models Inference

arXiv.org Artificial Intelligence

Early Exiting is one of the most popular methods to achieve efficient inference. Current early exiting methods adopt the (weighted) sum of the cross entropy loss of all internal classifiers during training, imposing all these classifiers to predict all instances correctly. However, during inference, as long as one internal classifier predicts an instance correctly, it can accelerate without losing accuracy. Thus, there is a notable gap between training and inference. We propose ConsistentEE, an early exiting method that is consistent in training and inference. ConsistentEE formulates the early exiting process as a reinforcement learning problem. A policy network is added to decide whether an instance should exit or continue. The training objective of ConsistentEE only require each instance to be predicted correctly by one internal classifier. Additionally, we introduce the concept Memorize Layer to measure the hardness of an instance. We incorporate memorized layer into reward function design, which allows ``easy'' instances to focus more on acceleration while ``hard'' instances to focus more on accuracy. Experimental results show that our method outperforms other baselines on various natural language understanding and generation tasks.


On the Trustworthiness Landscape of State-of-the-art Generative Models: A Survey and Outlook

arXiv.org Artificial Intelligence

Diffusion models and large language models have emerged as leading-edge generative models, revolutionizing various aspects of human life. However, the practical implementations of these models have also exposed inherent risks, bringing to the forefront their evil sides and sparking concerns regarding their trustworthiness. Despite the wealth of literature on this subject, a comprehensive survey specifically delving into the intersection of large-scale generative models and their trustworthiness remains largely absent. To bridge this gap, this paper investigates both the long-standing and emerging threats associated with these models across four fundamental dimensions: 1) privacy, 2) security, 3) fairness, and 4) responsibility. Based on the investigation results, we develop an extensive map outlining the trustworthiness of large generative models. After that, we provide practical recommendations and potential research directions for future secure applications equipped with large generative models, ultimately promoting the trustworthiness of the models and benefiting the society as a whole.


DocAsRef: An Empirical Study on Repurposing Reference-Based Summary Quality Metrics Reference-Freely

arXiv.org Artificial Intelligence

Automated summary quality assessment falls into two categories: reference-based and reference-free. Reference-based metrics, historically deemed more accurate due to the additional information provided by human-written references, are limited by their reliance on human input. In this paper, we hypothesize that the comparison methodologies used by some reference-based metrics to evaluate a system summary against its corresponding reference can be effectively adapted to assess it against its source document, thereby transforming these metrics into reference-free ones. Experimental results support this hypothesis. After being repurposed reference-freely, the zero-shot BERTScore using the pretrained DeBERTa-large-MNLI model of <0.5B parameters consistently outperforms its original reference-based version across various aspects on the SummEval and Newsroom datasets. It also excels in comparison to most existing reference-free metrics and closely competes with zero-shot summary evaluators based on GPT-3.5.


Learning Knowledge-Enhanced Contextual Language Representations for Domain Natural Language Understanding

arXiv.org Artificial Intelligence

Knowledge-Enhanced Pre-trained Language Models (KEPLMs) improve the performance of various downstream NLP tasks by injecting knowledge facts from large-scale Knowledge Graphs (KGs). However, existing methods for pre-training KEPLMs with relational triples are difficult to be adapted to close domains due to the lack of sufficient domain graph semantics. In this paper, we propose a Knowledge-enhanced lANGuAge Representation learning framework for various clOsed dOmains (KANGAROO) via capturing the implicit graph structure among the entities. Specifically, since the entity coverage rates of closed-domain KGs can be relatively low and may exhibit the global sparsity phenomenon for knowledge injection, we consider not only the shallow relational representations of triples but also the hyperbolic embeddings of deep hierarchical entity-class structures for effective knowledge fusion.Moreover, as two closed-domain entities under the same entity-class often have locally dense neighbor subgraphs counted by max point biconnected component, we further propose a data augmentation strategy based on contrastive learning over subgraphs to construct hard negative samples of higher quality. It makes the underlying KELPMs better distinguish the semantics of these neighboring entities to further complement the global semantic sparsity. In the experiments, we evaluate KANGAROO over various knowledge-aware and general NLP tasks in both full and few-shot learning settings, outperforming various KEPLM training paradigms performance in closed-domains significantly.


Refiner: Data Refining against Gradient Leakage Attacks in Federated Learning

arXiv.org Artificial Intelligence

Recent works have brought attention to the vulnerability of Federated Learning (FL) systems to gradient leakage attacks. Such attacks exploit clients' uploaded gradients to reconstruct their sensitive data, thereby compromising the privacy protection capability of FL. In response, various defense mechanisms have been proposed to mitigate this threat by manipulating the uploaded gradients. Unfortunately, empirical evaluations have demonstrated limited resilience of these defenses against sophisticated attacks, indicating an urgent need for more effective defenses. In this paper, we explore a novel defensive paradigm that departs from conventional gradient perturbation approaches and instead focuses on the construction of robust data. Intuitively, if robust data exhibits low semantic similarity with clients' raw data, the gradients associated with robust data can effectively obfuscate attackers. To this end, we design Refiner that jointly optimizes two metrics for privacy protection and performance maintenance. The utility metric is designed to promote consistency between the gradients of key parameters associated with robust data and those derived from clients' data, thus maintaining model performance. Furthermore, the privacy metric guides the generation of robust data towards enlarging the semantic gap with clients' data. Theoretical analysis supports the effectiveness of Refiner, and empirical evaluations on multiple benchmark datasets demonstrate the superior defense effectiveness of Refiner at defending against state-of-the-art attacks.