Goto

Collaborating Authors

 Chen, Bryant


The Hierarchy of Stable Distributions and Operators to Trade Off Stability and Performance

arXiv.org Artificial Intelligence

Recent work addressing model reliability and generalization has resulted in a variety of methods that seek to proactively address differences between the training and unknown target environments. While most methods achieve this by finding distributions that will be invariant across environments, we will show they do not necessarily find the same distributions which has implications for performance. In this paper we unify existing work on prediction using stable distributions by relating environmental shifts to edges in the graph underlying a prediction problem, and characterize stable distributions as those which effectively remove these edges. We then quantify the effect of edge deletion on performance in the linear case and corroborate the findings in a simulated and real data experiment.


Detecting Backdoor Attacks on Deep Neural Networks by Activation Clustering

arXiv.org Machine Learning

While machine learning (ML) models are being increasingly trusted to make decisions in different and varying areas, the safety of systems using such models has become an increasing concern. In particular, ML models are often trained on data from potentially untrustworthy sources, providing adversaries with the opportunity to manipulate them by inserting carefully crafted samples into the training set. Recent work has shown that this type of attack, called a poisoning attack, allows adversaries to insert backdoors or trojans into the model, enabling malicious behavior with simple external backdoor triggers at inference time and only a blackbox perspective of the model itself. Detecting this type of attack is challenging because the unexpected behavior occurs only when a backdoor trigger, which is known only to the adversary, is present. Model users, either direct users of training data or users of pre-trained model from a catalog, may not guarantee the safe operation of their ML-based system. In this paper, we propose a novel approach to backdoor detection and removal for neural networks. Through extensive experimental results, we demonstrate its effectiveness for neural networks classifying text and images. To the best of our knowledge, this is the first methodology capable of detecting poisonous data crafted to insert backdoors and repairing the model that does not require a verified and trusted dataset.


Identification and Overidentification of Linear Structural Equation Models

Neural Information Processing Systems

In this paper, we address the problems of identifying linear structural equation models and discovering the constraints they imply. We first extend the half-trek criterion to cover a broader class of models and apply our extension to finding testable constraints implied by the model. We then show that any semi-Markovian linear model can be recursively decomposed into simpler sub-models, resulting in improved identification and constraint discovery power. Finally, we show that, unlike the existing methods developed for linear models, the resulting method subsumes the identification and constraint discovery algorithms for non-parametric models.


Incorporating Knowledge into Structural Equation Models using Auxiliary Variables

arXiv.org Artificial Intelligence

In this paper, we extend graph-based identification methods by allowing background knowledge in the form of non-zero parameter values. Such information could be obtained, for example, from a previously conducted randomized experiment, from substantive understanding of the domain, or even an identification technique. To incorporate such information systematically, we propose the addition of auxiliary variables to the model, which are constructed so that certain paths will be conveniently cancelled. This cancellation allows the auxiliary variables to help conventional methods of identification (e.g., single-door criterion, instrumental variables, half-trek criterion), as well as model testing (e.g., d-separation, over-identification). Moreover, by iteratively alternating steps of identification and adding auxiliary variables, we can improve the power of existing identification methods via a bootstrapping approach that does not require external knowledge. We operationalize this method for simple instrumental sets (a generalization of instrumental variables) and show that the resulting method is able to identify at least as many models as the most general identification method for linear systems known to date. We further discuss the application of auxiliary variables to the tasks of model testing and z-identification.


Decomposition and Identification of Linear Structural Equation Models

arXiv.org Artificial Intelligence

In this paper, we address the problem of identifying linear structural equation models. We first extend the edge set half-trek criterion to cover a broader class of models. We then show that any semi-Markovian linear model can be recursively decomposed into simpler sub-models, resulting in improved identification power. Finally, we show that, unlike the existing methods developed for linear models, the resulting method subsumes the identification algorithm of non-parametric models.


Testable Implications of Linear Structural Equation Models

AAAI Conferences

In causal inference, all methods of model learning rely on testable implications, namely, properties of the joint distribution that are dictated by the model structure. These constraints, if not satisfied in the data, allow us to reject or modify the model. Most common methods of testing a linear structural equation model (SEM) rely on the likelihood ratio or chi-square test which simultaneously tests all of the restrictions implied by the model. Local constraints, on the other hand, offer increased power (Bollen and Pearl, 2013; McDonald, 2002) and, in the case of failure, provide the modeler with insight for revising the model specification. One strategy of uncovering local constraints in linear SEMs is to search for overidentified path coefficients. While these overidentifying constraints are well known, no method has been given for systematically discovering them. In this paper, we extend the half-trek criterion of (Foygel et al., 2012) to identify a larger set of structural coefficients and use it to systematically discover overidentifying constraints. Still open is the question of whether our algorithm is complete.