Collaborating Authors

Chen, Boli

Hyperbolic Interaction Model For Hierarchical Multi-Label Classification Machine Learning

Different from the traditional classification tasks which assume mutual exclusion of labels, hierarchical multi-label classification (HMLC) aims to assign multiple labels to every instance with the labels organized under hierarchical relations. In fact, linguistic ontologies are intrinsic hierarchies. Besides the labels, the conceptual relations between words can also form hierarchical structures. Thus it can be a challenge to learn mappings from the word space to the label space, and vice versa. We propose to model the word and label hierarchies by embedding them jointly in the hyperbolic space. The main reason is that the tree-likeness of the hyperbolic space matches the complexity of symbolic data with hierarchical structures. A new hyperbolic interaction model (HyperIM) is designed to learn the label-aware document representations and make predictions for HMLC. Extensive experiments are conducted on three benchmark datasets. The results have demonstrated that the new model can realistically capture the complex data structures and further improve the performance for HMLC comparing with the state-of-the-art methods. To facilitate future research, our code is publicly available.

Label-aware Document Representation via Hybrid Attention for Extreme Multi-Label Text Classification Machine Learning

Extreme multi-label text classification (XMTC) aims at tagging a document with most relevant labels from an extremely large-scale label set. It is a challenging problem especially for the tail labels because there are only few training documents to build classifier. This paper is motivated to better explore the semantic relationship between each document and extreme labels by taking advantage of both document content and label correlation. Our objective is to establish an explicit label-aware representation for each document with a hybrid attention deep neural network model(LAHA). LAHA consists of three parts. The first part adopts a multi-label self-attention mechanism to detect the contribution of each word to labels. The second part exploits the label structure and document content to determine the semantic connection between words and labels in a same latent space. An adaptive fusion strategy is designed in the third part to obtain the final label-aware document representation so that the essence of previous two parts can be sufficiently integrated. Extensive experiments have been conducted on six benchmark datasets by comparing with the state-of-the-art methods. The results show the superiority of our proposed LAHA method, especially on the tail labels.