Goto

Collaborating Authors

 Chen, Binqi


Large Language Model Agent: A Survey on Methodology, Applications and Challenges

arXiv.org Artificial Intelligence

The era of intelligent agents is upon us, driven by revolutionary advancements in large language models. Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence. This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy, linking architectural foundations, collaboration mechanisms, and evolutionary pathways. We unify fragmented research threads by revealing fundamental connections between agent design principles and their emergent behaviors in complex environments. Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time, while also addressing evaluation methodologies, tool applications, practical challenges, and diverse application domains. By surveying the latest developments in this rapidly evolving field, we offer researchers a structured taxonomy for understanding LLM agents and identify promising directions for future research. The collection is available at https://github.com/luo-junyu/Awesome-Agent-Papers.


GLCC: A General Framework for Graph-Level Clustering

arXiv.org Artificial Intelligence

This paper studies the problem of graph-level clustering, which is a novel yet challenging task. This problem is critical in a variety of real-world applications such as protein clustering and genome analysis in bioinformatics. Recent years have witnessed the success of deep clustering coupled with graph neural networks (GNNs). However, existing methods focus on clustering among nodes given a single graph, while exploring clustering on multiple graphs is still under-explored. In this paper, we propose a general graph-level clustering framework named Graph-Level Contrastive Clustering (GLCC) given multiple graphs. Specifically, GLCC first constructs an adaptive affinity graph to explore instance- and cluster-level contrastive learning (CL). Instance-level CL leverages graph Laplacian based contrastive loss to learn clustering-friendly representations while cluster-level CL captures discriminative cluster representations incorporating neighbor information of each sample. Moreover, we utilize neighbor-aware pseudo-labels to reward the optimization of representation learning. The two steps can be alternatively trained to collaborate and benefit each other. Experiments on a range of well-known datasets demonstrate the superiority of our proposed GLCC over competitive baselines.