Chen, Binghui
DAMO-StreamNet: Optimizing Streaming Perception in Autonomous Driving
He, Jun-Yan, Cheng, Zhi-Qi, Li, Chenyang, Xiang, Wangmeng, Chen, Binghui, Luo, Bin, Geng, Yifeng, Xie, Xuansong
Real-time perception, or streaming perception, is a crucial aspect of autonomous driving that has yet to be thoroughly explored in existing research. To address this gap, we present DAMO-StreamNet, an optimized framework that combines recent advances from the YOLO series with a comprehensive analysis of spatial and temporal perception mechanisms, delivering a cutting-edge solution. The key innovations of DAMO-StreamNet are (1) A robust neck structure incorporating deformable convolution, enhancing the receptive field and feature alignment capabilities (2) A dual-branch structure that integrates short-path semantic features and long-path temporal features, improving motion state prediction accuracy. (3) Logits-level distillation for efficient optimization, aligning the logits of teacher and student networks in semantic space. (4) A real-time forecasting mechanism that updates support frame features with the current frame, ensuring seamless streaming perception during inference. Our experiments demonstrate that DAMO-StreamNet surpasses existing state-of-the-art methods, achieving 37.8% (normal size (600, 960)) and 43.3% (large size (1200, 1920)) sAP without using extra data. This work not only sets a new benchmark for real-time perception but also provides valuable insights for future research. Additionally, DAMO-StreamNet can be applied to various autonomous systems, such as drones and robots, paving the way for real-time perception. The code is at https://github.com/zhiqic/DAMO-StreamNet.
Virtual Class Enhanced Discriminative Embedding Learning
Chen, Binghui, Deng, Weihong, Shen, Haifeng
Recently, learning discriminative features to improve the recognition performances gradually becomes the primary goal of deep learning, and numerous remarkable works have emerged. In this paper, we propose a novel yet extremely simple method Virtual Softmax to enhance the discriminative property of learned features by injecting a dynamic virtual negative class into the original softmax. Injecting virtual class aims to enlarge inter-class margin and compress intra-class distribution by strengthening the decision boundary constraint. Although it seems weird to optimize with this additional virtual class, we show that our method derives from an intuitive and clear motivation, and it indeed encourages the features to be more compact and separable. This paper empirically and experimentally demonstrates the superiority of Virtual Softmax, improving the performances on a variety of object classification and face verification tasks.
Virtual Class Enhanced Discriminative Embedding Learning
Chen, Binghui, Deng, Weihong, Shen, Haifeng
Recently, learning discriminative features to improve the recognition performances gradually becomes the primary goal of deep learning, and numerous remarkable works have emerged. In this paper, we propose a novel yet extremely simple method Virtual Softmax to enhance the discriminative property of learned features by injecting a dynamic virtual negative class into the original softmax. Injecting virtual class aims to enlarge inter-class margin and compress intra-class distribution by strengthening the decision boundary constraint. Although it seems weird to optimize with this additional virtual class, we show that our method derives from an intuitive and clear motivation, and it indeed encourages the features to be more compact and separable. This paper empirically and experimentally demonstrates the superiority of Virtual Softmax, improving the performances on a variety of object classification and face verification tasks.