Goto

Collaborating Authors

 Chen, Ao


SplatPose: Geometry-Aware 6-DoF Pose Estimation from Single RGB Image via 3D Gaussian Splatting

arXiv.org Artificial Intelligence

6-DoF pose estimation is a fundamental task in computer vision with wide-ranging applications in augmented reality and robotics. Existing single RGB-based methods often compromise accuracy due to their reliance on initial pose estimates and susceptibility to rotational ambiguity, while approaches requiring depth sensors or multi-view setups incur significant deployment costs. To address these limitations, we introduce SplatPose, a novel framework that synergizes 3D Gaussian Splatting (3DGS) with a dual-branch neural architecture to achieve high-precision pose estimation using only a single RGB image. Central to our approach is the Dual-Attention Ray Scoring Network (DARS-Net), which innovatively decouples positional and angular alignment through geometry-domain attention mechanisms, explicitly modeling directional dependencies to mitigate rotational ambiguity. Additionally, a coarse-to-fine optimization pipeline progressively refines pose estimates by aligning dense 2D features between query images and 3DGS-synthesized views, effectively correcting feature misalignment and depth errors from sparse ray sampling. Experiments on three benchmark datasets demonstrate that SplatPose achieves state-of-the-art 6-DoF pose estimation accuracy in single RGB settings, rivaling approaches that depend on depth or multi-view images.


Improving the Anomaly Detection in GPR Images by Fine-Tuning CNNs with Synthetic Data

arXiv.org Artificial Intelligence

Ground Penetrating Radar (GPR) has been widely used to estimate the healthy operation of some urban roads and underground facilities. When identifying subsurface anomalies by GPR in an area, the obtained data could be unbalanced, and the numbers and types of possible underground anomalies could not be acknowledged in advance. In this paper, a novel method is proposed to improve the subsurface anomaly detection from GPR B-scan images. A normal (i.e. without subsurface objects) GPR image section is firstly collected in the detected area. Concerning that the GPR image is essentially the representation of electromagnetic (EM) wave and propagation time, and to preserve both the subsurface background and objects' details, the normal GPR image is segmented and then fused with simulated GPR images that contain different kinds of objects to generate the synthetic data for the detection area based on the wavelet decompositions. Pre-trained CNNs could then be fine-tuned with the synthetic data, and utilized to extract features of segmented GPR images subsequently obtained in the detection area. The extracted features could be classified by the one-class learning algorithm in the feature space without pre-set anomaly types or numbers. The conducted experiments demonstrate that fine-tuning the pre-trained CNN with the proposed synthetic data could effectively improve the feature extraction of the network for the objects in the detection area. Besides, the proposed method requires only a section of normal data that could be easily obtained in the detection area, and could also meet the timeliness requirements in practical applications.


Deconvolution-and-convolution Networks

arXiv.org Artificial Intelligence

Recent findings, however, suggest that CNN may not be the best option for 1D pattern recognition, especially for datasets with over 1 M training samples, e.g., existing CNN-based methods for 1D signals are highly reliant on human pre-processing. Common practices include utilizing discrete Fourier transform (DFT) to reconstruct 1D signal into 2D array. To add to extant knowledge, in this paper, a novel 1D data processing algorithm is proposed for 1D big data analysis through learning a deep deconvolutional-convolutional network. Rather than resorting to human-based techniques, we employed deconvolution layers to convert 1 D signals into 2D data. On top of the deconvolution model, the data was identified by a 2D CNN. Compared with the existing 1D signal processing algorithms, DCNet boasts the advantages of less human-made inference and higher generalization performance. Our experimental results from a varying number of training patterns (50 K to 11 M) from classification and regression demonstrate the desirability of our new approach.