Goto

Collaborating Authors

 Chen, Allison


Analyzing the Roles of Language and Vision in Learning from Limited Data

arXiv.org Artificial Intelligence

Does language help make sense of the visual world? How important is it to actually see the world rather than having it described with words? These basic questions about the nature of intelligence have been difficult to answer because we only had one example of an intelligent system -- humans -- and limited access to cases that isolated language or vision. However, the development of sophisticated Vision-Language Models (VLMs) by artificial intelligence researchers offers us new opportunities to explore the contributions that language and vision make to learning about the world. We ablate components from the cognitive architecture of these models to identify their contributions to learning new tasks from limited data. We find that a language model leveraging all components recovers a majority of a VLM's performance, despite its lack of visual input, and that language seems to allow this by providing access to prior knowledge and reasoning.


Fall Detection using Knowledge Distillation Based Long short-term memory for Offline Embedded and Low Power Devices

arXiv.org Artificial Intelligence

This paper presents a cost-effective, low-power approach to unintentional fall detection using knowledge distillation-based LSTM (Long Short-Term Memory) models to significantly improve accuracy. With a primary focus on analyzing time-series data collected from various sensors, the solution offers real-time detection capabilities, ensuring prompt and reliable identification of falls. The authors investigate fall detection models that are based on different sensors, comparing their accuracy rates and performance. Furthermore, they employ the technique of knowledge distillation to enhance the models' precision, resulting in refined accurate configurations that consume lower power. As a result, this proposed solution presents a compelling avenue for the development of energy-efficient fall detection systems for future advancements in this critical domain.


Small Lesion Segmentation in Brain MRIs with Subpixel Embedding

arXiv.org Artificial Intelligence

We present a method to segment MRI scans of the human brain into ischemic stroke lesion and normal tissues. We propose a neural network architecture in the form of a standard encoder-decoder where predictions are guided by a spatial expansion embedding network. Our embedding network learns features that can resolve detailed structures in the brain without the need for high-resolution training images, which are often unavailable and expensive to acquire. Alternatively, the encoder-decoder learns global structures by means of striding and max pooling. Our embedding network complements the encoder-decoder architecture by guiding the decoder with fine-grained details lost to spatial downsampling during the encoder stage. Unlike previous works, our decoder outputs at 2 times the input resolution, where a single pixel in the input resolution is predicted by four neighboring subpixels in our output. To obtain the output at the original scale, we propose a learnable downsampler (as opposed to hand-crafted ones e.g. bilinear) that combines subpixel predictions. Our approach improves the baseline architecture by approximately 11.7% and achieves the state of the art on the ATLAS public benchmark dataset with a smaller memory footprint and faster runtime than the best competing method. Our source code has been made available at: https://github.com/alexklwong/subpixel-embedding-segmentation.