Chen, Albert
tuGEMM: Area-Power-Efficient Temporal Unary GEMM Architecture for Low-Precision Edge AI
Nair, Harideep, Vellaisamy, Prabhu, Chen, Albert, Finn, Joseph, Li, Anna, Trivedi, Manav, Shen, John Paul
General matrix multiplication (GEMM) is a ubiquitous computing kernel/algorithm for data processing in diverse applications, including artificial intelligence (AI) and deep learning (DL). Recent shift towards edge computing has inspired GEMM architectures based on unary computing, which are predominantly stochastic and rate-coded systems. This paper proposes a novel GEMM architecture based on temporal-coding, called tuGEMM, that performs exact computation. We introduce two variants of tuGEMM, serial and parallel, with distinct area/power-latency trade-offs. Post-synthesis Power-Performance-Area (PPA) in 45 nm CMOS are reported for 2-bit, 4-bit, and 8-bit computations. The designs illustrate significant advantages in area-power efficiency over state-of-the-art stochastic unary systems especially at low precisions, e.g. incurring just 0.03 mm^2 and 9 mW for 4 bits, and 0.01 mm^2 and 4 mW for 2 bits. This makes tuGEMM ideal for power constrained mobile and edge devices performing always-on real-time sensory processing.
ReCLIP: Refine Contrastive Language Image Pre-Training with Source Free Domain Adaptation
Hu, Xuefeng, Zhang, Ke, Xia, Lu, Chen, Albert, Luo, Jiajia, Sun, Yuyin, Wang, Ken, Qiao, Nan, Zeng, Xiao, Sun, Min, Kuo, Cheng-Hao, Nevatia, Ram
Large-scale Pre-Training Vision-Language Model such as CLIP has demonstrated outstanding performance in zero-shot classification, e.g. achieving 76.3% top-1 accuracy on ImageNet without seeing any example, which leads to potential benefits to many tasks that have no labeled data. However, while applying CLIP to a downstream target domain, the presence of visual and text domain gaps and cross-modality misalignment can greatly impact the model performance. To address such challenges, we propose ReCLIP, the first source-free domain adaptation method for vision-language models, which does not require any source data or target labeled data. ReCLIP first learns a projection space to mitigate the misaligned visual-text embeddings and learns pseudo labels, and then deploys cross-modality self-training with the pseudo labels, to update visual and text encoders, refine labels and reduce domain gaps and misalignments iteratively. With extensive experiments, we demonstrate ReCLIP reduces the average error rate of CLIP from 30.17% to 25.06% on 22 image classification benchmarks. Code available at https://github.com/michiganleon/ReCLIP_WACV.