Goto

Collaborating Authors

 Chellappan, Vijila


Explainable machine learning to enable high-throughput electrical conductivity optimization of doped conjugated polymers

arXiv.org Artificial Intelligence

The combination of high-throughput experimentation techniques and machine learning (ML) has recently ushered in a new era of accelerated material discovery, enabling the identification of materials with cutting-edge properties. However, the measurement of certain physical quantities remains challenging to automate. Specifically, meticulous process control, experimentation and laborious measurements are required to achieve optimal electrical conductivity in doped polymer materials. We propose a ML approach, which relies on readily measured absorbance spectra, to accelerate the workflow associated with measuring electrical conductivity. The first ML model (classification model), accurately classifies samples with a conductivity >~25 to 100 S/cm, achieving a maximum of 100% accuracy rate. For the subset of highly conductive samples, we employed a second ML model (regression model), to predict their conductivities, yielding an impressive test R2 value of 0.984. To validate the approach, we showed that the models, neither trained on the samples with the two highest conductivities of 498 and 506 S/cm, were able to, in an extrapolative manner, correctly classify and predict them at satisfactory levels of errors. The proposed ML workflow results in an improvement in the efficiency of the conductivity measurements by 89% of the maximum achievable using our experimental techniques. Furthermore, our approach addressed the common challenge of the lack of explainability in ML models by exploiting bespoke mathematical properties of the descriptors and ML model, allowing us to gain corroborated insights into the spectral influences on conductivity. Through this study, we offer an accelerated pathway for optimizing the properties of doped polymer materials while showcasing the valuable insights that can be derived from purposeful utilization of ML in experimental science.


Tackling Data Scarcity with Transfer Learning: A Case Study of Thickness Characterization from Optical Spectra of Perovskite Thin Films

arXiv.org Artificial Intelligence

Transfer learning increasingly becomes an important tool in handling data scarcity often encountered in machine learning. In the application of high-throughput thickness as a downstream process of the high-throughput optimization of optoelectronic thin films with autonomous workflows, data scarcity occurs especially for new materials. To achieve high-throughput thickness characterization, we propose a machine learning model called thicknessML that predicts thickness from UV-Vis spectrophotometry input and an overarching transfer learning workflow. We demonstrate the transfer learning workflow from generic source domain of generic band-gapped materials to specific target domain of perovskite materials, where the target domain data only come from limited number (18) of refractive indices from literature. The target domain can be easily extended to other material classes with a few literature data. Defining thickness prediction accuracy to be within-10% deviation, thicknessML achieves 92.2% (with a deviation of 3.6%) accuracy with transfer learning compared to 81.8% (with a deviation of 3.6%) 11.7% without (lower mean and larger standard deviation). Experimental validation on six deposited perovskite films also corroborates the efficacy of the proposed workflow by yielding a 10.5% mean absolute percentage error (MAPE).