Goto

Collaborating Authors

 Che, Haoxuan


FedDAG: Federated Domain Adversarial Generation Towards Generalizable Medical Image Analysis

arXiv.org Artificial Intelligence

--Federated domain generalization aims to train a global model from multiple source domains and ensure its generalization ability to unseen target domains. Due to the target domain being with unknown domain shifts, attempting to approximate these gaps by source domains may be the key to improving model generalization capability. Existing works mainly focus on sharing and recombining local domain-specific attributes to increase data diversity and simulate potential domain shifts. However, these methods may be insufficient since only the local attribute recombination can be hard to touch the out-of-distribution of global data. In this paper, we propose a simple-yet-efficient framework named Federated Domain Adversarial Generation (FedDAG). It aims to simulate the domain shift and improve the model generalization by adversarially generating novel domains different from local and global source domains. Specifically, it generates novel-style images by maximizing the instance-level feature discrepancy between original and generated images and trains a generalizable task model by minimizing their feature discrepancy. Further, we observed that FedDAG could cause different performance improvements for local models. It may be due to inherent data isolation and heterogeneity among clients, exacerbating the imbalance in their generalization contributions to the global model. Ignoring this imbalance can lead the global model's generalization ability to be sub-optimal, further limiting the novel domain generation procedure. Thus, to mitigate this imbalance, FedDAG hierarchically aggregates local models at the within-client and across-client levels by using the sharpness concept to evaluate client model generalization contributions. Extensive experiments across four medical benchmarks demonstrate FedDAG's ability to enhance generalization in federated medical scenarios. ITH the continuous advancement of medical research and clinical practice, the medical field generates substantial data [1], [2]. This work was supported by the National Natural Science Foundation of China (No. 62202403), Hong Kong Innovation and Technology Fund (Project No. MHP/002/22) and Shenzhen Science and Technology Innovation Committee Fund (Project No. SGDX20210823103201011). H. Che and H. Jin are with the Department of Computer Science and Engineering, at the Hong Kong University of Science and Technology University, Hong Kong SAR, China. Xia are with the National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.


GameGen-X: Interactive Open-world Game Video Generation

arXiv.org Artificial Intelligence

We introduce GameGen-X, the first diffusion transformer model specifically designed for both generating and interactively controlling open-world game videos. This model facilitates high-quality, open-domain generation by simulating an extensive array of game engine features, such as innovative characters, dynamic environments, complex actions, and diverse events. Additionally, it provides interactive controllability, predicting and altering future content based on the current clip, thus allowing for gameplay simulation. To realize this vision, we first collected and built an Open-World Video Game Dataset from scratch. It is the first and largest dataset for open-world game video generation and control, which comprises over a million diverse gameplay video clips sampling from over 150 games with informative captions from GPT-4o. GameGen-X undergoes a two-stage training process, consisting of foundation model pre-training and instruction tuning. Firstly, the model was pre-trained via text-to-video generation and video continuation, endowing it with the capability for long-sequence, high-quality open-domain game video generation. Further, to achieve interactive controllability, we designed InstructNet to incorporate game-related multi-modal control signal experts. This allows the model to adjust latent representations based on user inputs, unifying character interaction and scene content control for the first time in video generation. During instruction tuning, only the InstructNet is updated while the pre-trained foundation model is frozen, enabling the integration of interactive controllability without loss of diversity and quality of generated video content.


PromptMRG: Diagnosis-Driven Prompts for Medical Report Generation

arXiv.org Artificial Intelligence

Automatic medical report generation (MRG) is of great research value as it has the potential to relieve radiologists from the heavy burden of report writing. Despite recent advancements, accurate MRG remains challenging due to the need for precise clinical understanding and the identification of clinical findings. Moreover, the imbalanced distribution of diseases makes the challenge even more pronounced, as rare diseases are underrepresented in training data, making their diagnostic performance unreliable. To address these challenges, we propose diagnosis-driven prompts for medical report generation (PromptMRG), a novel framework that aims to improve the diagnostic accuracy of MRG with the guidance of diagnosis-aware prompts. Specifically, PromptMRG is based on encoder-decoder architecture with an extra disease classification branch. When generating reports, the diagnostic results from the classification branch are converted into token prompts to explicitly guide the generation process. To further improve the diagnostic accuracy, we design cross-modal feature enhancement, which retrieves similar reports from the database to assist the diagnosis of a query image by leveraging the knowledge from a pre-trained CLIP. Moreover, the disease imbalanced issue is addressed by applying an adaptive logit-adjusted loss to the classification branch based on the individual learning status of each disease, which overcomes the barrier of text decoder's inability to manipulate disease distributions. Experiments on two MRG benchmarks show the effectiveness of the proposed method, where it obtains state-of-the-art clinical efficacy performance on both datasets.


DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical Coherence Tomography Angiography Images

arXiv.org Artificial Intelligence

Computer-assisted automatic analysis of diabetic retinopathy (DR) is of great importance in reducing the risks of vision loss and even blindness. Ultra-wide optical coherence tomography angiography (UW-OCTA) is a non-invasive and safe imaging modality in DR diagnosis system, but there is a lack of publicly available benchmarks for model development and evaluation. To promote further research and scientific benchmarking for diabetic retinopathy analysis using UW-OCTA images, we organized a challenge named "DRAC - Diabetic Retinopathy Analysis Challenge" in conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022). The challenge consists of three tasks: segmentation of DR lesions, image quality assessment and DR grading. The scientific community responded positively to the challenge, with 11, 12, and 13 teams from geographically diverse institutes submitting different solutions in these three tasks, respectively. This paper presents a summary and analysis of the top-performing solutions and results for each task of the challenge. The obtained results from top algorithms indicate the importance of data augmentation, model architecture and ensemble of networks in improving the performance of deep learning models. These findings have the potential to enable new developments in diabetic retinopathy analysis. The challenge remains open for post-challenge registrations and submissions for benchmarking future methodology developments.