Goto

Collaborating Authors

 Chauhan, Jatin


Fairness under Covariate Shift: Improving Fairness-Accuracy tradeoff with few Unlabeled Test Samples

arXiv.org Artificial Intelligence

Covariate shift in the test data is a common practical phenomena that can significantly downgrade both the accuracy and the fairness performance of the model. Ensuring fairness across different sensitive groups under covariate shift is of paramount importance due to societal implications like criminal justice. We operate in the unsupervised regime where only a small set of unlabeled test samples along with a labeled training set is available. Towards improving fairness under this highly challenging yet realistic scenario, we make three contributions. First is a novel composite weighted entropy based objective for prediction accuracy which is optimized along with a representation matching loss for fairness. We experimentally verify that optimizing with our loss formulation outperforms a number of state-of-the-art baselines in the pareto sense with respect to the fairness-accuracy tradeoff on several standard datasets. Our second contribution is a new setting we term Asymmetric Covariate Shift that, to the best of our knowledge, has not been studied before. Asymmetric covariate shift occurs when distribution of covariates of one group shifts significantly compared to the other groups and this happens when a dominant group is over-represented. While this setting is extremely challenging for current baselines, We show that our proposed method significantly outperforms them. Our third contribution is theoretical, where we show that our weighted entropy term along with prediction loss on the training set approximates test loss under covariate shift. Empirically and through formal sample complexity bounds, we show that this approximation to the unseen test loss does not depend on importance sampling variance which affects many other baselines.


Universality and Limitations of Prompt Tuning

arXiv.org Artificial Intelligence

Despite the demonstrated empirical efficacy of prompt tuning to adapt a pretrained language model for a new task, the theoretical underpinnings of the difference between "tuning parameters before the input" against "the tuning of model weights" are limited. We thus take one of the first steps to understand the role of soft-prompt tuning for transformer-based architectures. By considering a general purpose architecture, we analyze prompt tuning from the lens of both: universal approximation and limitations with finite-depth fixed-weight pretrained transformers for continuous-valued functions. Our universality result guarantees the existence of a strong transformer with a prompt to approximate any sequence-to-sequence function in the set of Lipschitz functions. The limitations of prompt tuning for limited-depth transformers are first proved by constructing a set of datasets, that cannot be memorized by a prompt of any length for a given single encoder layer. We also provide a lower bound on the required number of tunable prompt parameters and compare the result with the number of parameters required for a low-rank update (based on LoRA) for a single-layer setting. We finally extend our analysis to multi-layer settings by providing sufficient conditions under which the transformer can at best learn datasets from invertible functions only. Our theoretical claims are also corroborated by empirical results.


Learning under Label Proportions for Text Classification

arXiv.org Artificial Intelligence

We present one of the preliminary NLP works under the challenging setup of Learning from Label Proportions (LLP), where the data is provided in an aggregate form called bags and only the proportion of samples in each class as the ground truth. This setup is inline with the desired characteristics of training models under Privacy settings and Weakly supervision. By characterizing some irregularities of the most widely used baseline technique DLLP, we propose a novel formulation that is also robust. This is accompanied with a learnability result that provides a generalization bound under LLP. Combining this formulation with a self-supervised objective, our method achieves better results as compared to the baselines in almost 87% of the experimental configurations which include large scale models for both long and short range texts across multiple metrics.


Learning Over Molecular Conformer Ensembles: Datasets and Benchmarks

arXiv.org Artificial Intelligence

Molecular Representation Learning (MRL) has proven impactful in numerous biochemical applications such as drug discovery and enzyme design. While Graph Neural Networks (GNNs) are effective at learning molecular representations from a 2D molecular graph or a single 3D structure, existing works often overlook the flexible nature of molecules, which continuously interconvert across conformations via chemical bond rotations and minor vibrational perturbations. To better account for molecular flexibility, some recent works formulate MRL as an ensemble learning problem, focusing on explicitly learning from a set of conformer structures. However, most of these studies have limited datasets, tasks, and models. In this work, we introduce the first MoleculAR Conformer Ensemble Learning (MARCEL) benchmark to thoroughly evaluate the potential of learning on conformer ensembles and suggest promising research directions. MARCEL includes four datasets covering diverse molecule- and reaction-level properties of chemically diverse molecules including organocatalysts and transition-metal catalysts, extending beyond the scope of common GNN benchmarks that are confined to drug-like molecules. In addition, we conduct a comprehensive empirical study, which benchmarks representative 1D, 2D, and 3D molecular representation learning models, along with two strategies that explicitly incorporate conformer ensembles into 3D MRL models. Our findings reveal that direct learning from an accessible conformer space can improve performance on a variety of tasks and models.


Learning Representations using Spectral-Biased Random Walks on Graphs

arXiv.org Machine Learning

Several state-of-the-art neural graph embedding methods are based on short random walks (stochastic processes) because of their ease of computation, simplicity in capturing complex local graph properties, scalability, and interpretibility. In this work, we are interested in studying how much a probabilistic bias in this stochastic process affects the quality of the nodes picked by the process. In particular, our biased walk, with a certain probability, favors movement towards nodes whose neighborhoods bear a structural resemblance to the current node's neighborhood. We succinctly capture this neighborhood as a probability measure based on the spectrum of the node's neighborhood subgraph represented as a normalized laplacian matrix. We propose the use of a paragraph vector model with a novel Wasserstein regularization term. We empirically evaluate our approach against several state-of-the-art node embedding techniques on a wide variety of real-world datasets and demonstrate that our proposed method significantly improves upon existing methods on both link prediction and node classification tasks.


Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs

arXiv.org Machine Learning

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.